找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ensemble Methods in Data Mining; Improving Accuracy T Giovanni Seni,John F. Elder Book 2010 Springer Nature Switzerland AG 2010

[復(fù)制鏈接]
查看: 26933|回復(fù): 38
樓主
發(fā)表于 2025-3-21 18:44:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Ensemble Methods in Data Mining
副標(biāo)題Improving Accuracy T
編輯Giovanni Seni,John F. Elder
視頻videohttp://file.papertrans.cn/312/311371/311371.mp4
叢書名稱Synthesis Lectures on Data Mining and Knowledge Discovery
圖書封面Titlebook: Ensemble Methods in Data Mining; Improving Accuracy T Giovanni Seni,John F. Elder Book 2010 Springer Nature Switzerland AG 2010
描述Ensemble methods have been called the most influential development in Data Mining and Machine Learning in the past decade. They combine multiple models into one usually more accurate than the best of its components. Ensembles can provide a critical boost to industrial challenges -- from investment timing to drug discovery, and fraud detection to recommendation systems -- where predictive accuracy is more vital than model interpretability. Ensembles are useful with all modeling algorithms, but this book focuses on decision trees to explain them most clearly. After describing trees and their strengths and weaknesses, the authors provide an overview of regularization -- today understood to be a key reason for the superior performance of modern ensembling algorithms. The book continues with a clear description of two recent developments: Importance Sampling (IS) and Rule Ensembles (RE). IS reveals classic ensemble methods -- bagging, random forests, and boosting -- to be special cases of a single algorithm, thereby showing how to improve their accuracy and speed. REs are linear rule models derived from decision tree ensembles. They are the most interpretable version of ensembles, which
出版日期Book 2010
版次1
doihttps://doi.org/10.1007/978-3-031-01899-2
isbn_softcover978-3-031-00771-2
isbn_ebook978-3-031-01899-2Series ISSN 2151-0067 Series E-ISSN 2151-0075
issn_series 2151-0067
copyrightSpringer Nature Switzerland AG 2010
The information of publication is updating

書目名稱Ensemble Methods in Data Mining影響因子(影響力)




書目名稱Ensemble Methods in Data Mining影響因子(影響力)學(xué)科排名




書目名稱Ensemble Methods in Data Mining網(wǎng)絡(luò)公開度




書目名稱Ensemble Methods in Data Mining網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Ensemble Methods in Data Mining被引頻次




書目名稱Ensemble Methods in Data Mining被引頻次學(xué)科排名




書目名稱Ensemble Methods in Data Mining年度引用




書目名稱Ensemble Methods in Data Mining年度引用學(xué)科排名




書目名稱Ensemble Methods in Data Mining讀者反饋




書目名稱Ensemble Methods in Data Mining讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:59:51 | 只看該作者
Model Complexity, Model Selection and Regularization, what . and . are; this is important because ensemble methods succeed by reducing bias, reducing variance, or finding a good tradeoff between the two. We will present a definition for regularization and see three different implementations of it. Regularization is a variance control technique which p
板凳
發(fā)表于 2025-3-22 01:40:01 | 只看該作者
地板
發(fā)表于 2025-3-22 04:48:30 | 只看該作者
5#
發(fā)表于 2025-3-22 11:34:54 | 只看該作者
6#
發(fā)表于 2025-3-22 15:10:03 | 只看該作者
The Science and Business of Drug Discoverycuracy of popular algorithms depends strongly on the details of the problems addressed, as shown in Figure 1.1 (from Elder and Lee (1997)), which plots the relative out-of-sample error of five algorithms for six public-domain problems. Overall, neural network models did the best on this set of probl
7#
發(fā)表于 2025-3-22 18:58:38 | 只看該作者
8#
發(fā)表于 2025-3-23 00:38:40 | 只看該作者
9#
發(fā)表于 2025-3-23 03:10:46 | 只看該作者
10#
發(fā)表于 2025-3-23 07:15:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大同县| 梅州市| 抚远县| 柘城县| 会同县| 绥棱县| 奉化市| 阿拉善右旗| 岳池县| 福海县| 平遥县| 库车县| 会东县| 固镇县| 凉山| 平顶山市| 仙居县| 杂多县| 横峰县| 平武县| 射阳县| 云浮市| 日喀则市| 望都县| 乌兰浩特市| 万宁市| 福安市| 商城县| 台安县| 民丰县| 福泉市| 芜湖县| 阳原县| 灵丘县| 云阳县| 揭阳市| 商城县| 屯门区| 调兵山市| 于田县| 兴化市|