找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ensemble Machine Learning; Methods and Applicat Cha Zhang,Yunqian Ma Book 2012 Springer Science+Business Media, LLC 2012 Bagging Predictors

[復(fù)制鏈接]
查看: 29842|回復(fù): 46
樓主
發(fā)表于 2025-3-21 17:40:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Ensemble Machine Learning
副標(biāo)題Methods and Applicat
編輯Cha Zhang,Yunqian Ma
視頻videohttp://file.papertrans.cn/312/311370/311370.mp4
概述Covers all existing methods developed for ensemble learning.Presents overview and in-depth knowledge about ensemble learning.Discusses the pros and cons of various ensemble learning methods.Demonstrat
圖書封面Titlebook: Ensemble Machine Learning; Methods and Applicat Cha Zhang,Yunqian Ma Book 2012 Springer Science+Business Media, LLC 2012 Bagging Predictors
描述.It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics..?.Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike..
出版日期Book 2012
關(guān)鍵詞Bagging Predictors; Basic Boosting; Ensemble learning; Object Detection; classification algorithm; deep n
版次1
doihttps://doi.org/10.1007/978-1-4419-9326-7
isbn_softcover978-1-4899-8817-1
isbn_ebook978-1-4419-9326-7
copyrightSpringer Science+Business Media, LLC 2012
The information of publication is updating

書目名稱Ensemble Machine Learning影響因子(影響力)




書目名稱Ensemble Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Ensemble Machine Learning網(wǎng)絡(luò)公開度




書目名稱Ensemble Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Ensemble Machine Learning被引頻次




書目名稱Ensemble Machine Learning被引頻次學(xué)科排名




書目名稱Ensemble Machine Learning年度引用




書目名稱Ensemble Machine Learning年度引用學(xué)科排名




書目名稱Ensemble Machine Learning讀者反饋




書目名稱Ensemble Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:04:56 | 只看該作者
Book 2012is volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike..
板凳
發(fā)表于 2025-3-22 02:20:14 | 只看該作者
978-1-4899-8817-1Springer Science+Business Media, LLC 2012
地板
發(fā)表于 2025-3-22 06:17:26 | 只看該作者
The Sales Sat Nav for Media Consultantsny of the simple classifiers alone. A . (WL) is a learning algorithm capable of producing classifiers with probability of error strictly (but only slightly) less than that of random guessing (0.5, in the binary case). On the other hand, a . (SL) is able (given enough training data) to yield classifiers with arbitrarily small error probability.
5#
發(fā)表于 2025-3-22 12:41:56 | 只看該作者
6#
發(fā)表于 2025-3-22 15:35:16 | 只看該作者
https://doi.org/10.1007/b106381ithm which considers the cooperation and interaction among the ensemble members. NCL introduces a correlation penalty term into the cost function of each individual learner so that each learner minimizes its mean-square-error (MSE) error together with the correlation with other ensemble members.
7#
發(fā)表于 2025-3-22 17:06:22 | 只看該作者
8#
發(fā)表于 2025-3-22 21:56:24 | 只看該作者
Targeted Learning,probability distributions .. One refers to . as the statistical model for .. We consider so called semiparametric models that cannot be parameterized by a finite dimensional Euclidean vector. In addition, suppose that our target parameter of interest is a parameter ., so that ψ. = .(.) denotes the parameter value of interest.
9#
發(fā)表于 2025-3-23 01:45:23 | 只看該作者
Ensemble Learning by Negative Correlation Learning,ithm which considers the cooperation and interaction among the ensemble members. NCL introduces a correlation penalty term into the cost function of each individual learner so that each learner minimizes its mean-square-error (MSE) error together with the correlation with other ensemble members.
10#
發(fā)表于 2025-3-23 06:20:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
梁河县| 苏尼特右旗| 崇礼县| 棋牌| 开平市| 湛江市| 岗巴县| 桦甸市| 于都县| 酉阳| 天全县| 墨玉县| 敦煌市| 北京市| 新源县| 新丰县| 慈利县| 夏津县| 吉水县| 霍州市| 崇仁县| 壶关县| 台南市| 万盛区| 丹阳市| 比如县| 乌兰察布市| 虹口区| 扬中市| 曲水县| 五大连池市| 察雅县| 龙江县| 西充县| 玉屏| 长春市| 丹凤县| 大邑县| 辽宁省| 屏东县| 密云县|