找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ensemble Learning for AI Developers; Learn Bagging, Stack Alok Kumar,Mayank Jain Book 2020 Alok Kumar and Mayank Jain 2020 Ensemble Learnin

[復(fù)制鏈接]
查看: 44047|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:29:20 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Ensemble Learning for AI Developers
副標題Learn Bagging, Stack
編輯Alok Kumar,Mayank Jain
視頻videohttp://file.papertrans.cn/312/311369/311369.mp4
概述Explains ensemble learning with less math and more programming-friendly abstractions than presented in other books so it is easier for you to learn.Discusses the competitive edge that you can achieve
圖書封面Titlebook: Ensemble Learning for AI Developers; Learn Bagging, Stack Alok Kumar,Mayank Jain Book 2020 Alok Kumar and Mayank Jain 2020 Ensemble Learnin
描述Use ensemble learning techniques and models to improve your machine learning results..Ensemble Learning for AI Developers.?starts you at the beginning with an historical overview and explains key ensemble techniques and why they are needed. You then will learn how to change training data using bagging, bootstrap aggregating, random forest models, and cross-validation methods. Authors Kumar and Jain provide best practices to guide you in combining models and using tools to boost performance of your machine learning projects. They teach you how to effectively implement ensemble concepts such as stacking and boosting and to utilize popular libraries such as Keras, Scikit Learn, TensorFlow, PyTorch, and Microsoft LightGBM. Tips are presented to apply ensemble learning in different data science problems, including time series data, imaging data, and NLP. Recent advances in ensemble learning are discussed. Sample code is provided in the form of scripts and the IPython notebook..What You Will Learn.Understand the techniques and methods utilized in ensemble learning.Use bagging, stacking, and boosting to improve performance of your machine learning projects by combining models to decrease
出版日期Book 2020
關(guān)鍵詞Ensemble Learning; Machine Learning; Regression; Supervised Learning; Artificial Intelligence; Python; Dee
版次1
doihttps://doi.org/10.1007/978-1-4842-5940-5
isbn_softcover978-1-4842-5939-9
isbn_ebook978-1-4842-5940-5
copyrightAlok Kumar and Mayank Jain 2020
The information of publication is updating

書目名稱Ensemble Learning for AI Developers影響因子(影響力)




書目名稱Ensemble Learning for AI Developers影響因子(影響力)學(xué)科排名




書目名稱Ensemble Learning for AI Developers網(wǎng)絡(luò)公開度




書目名稱Ensemble Learning for AI Developers網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Ensemble Learning for AI Developers被引頻次




書目名稱Ensemble Learning for AI Developers被引頻次學(xué)科排名




書目名稱Ensemble Learning for AI Developers年度引用




書目名稱Ensemble Learning for AI Developers年度引用學(xué)科排名




書目名稱Ensemble Learning for AI Developers讀者反饋




書目名稱Ensemble Learning for AI Developers讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:37:13 | 只看該作者
Book 2020 with an historical overview and explains key ensemble techniques and why they are needed. You then will learn how to change training data using bagging, bootstrap aggregating, random forest models, and cross-validation methods. Authors Kumar and Jain provide best practices to guide you in combining
板凳
發(fā)表于 2025-3-22 03:12:44 | 只看該作者
地板
發(fā)表于 2025-3-22 04:37:33 | 只看該作者
http://image.papertrans.cn/e/image/311369.jpg
5#
發(fā)表于 2025-3-22 11:39:38 | 只看該作者
https://doi.org/10.1007/978-1-4842-5940-5Ensemble Learning; Machine Learning; Regression; Supervised Learning; Artificial Intelligence; Python; Dee
6#
發(fā)表于 2025-3-22 16:38:01 | 只看該作者
7#
發(fā)表于 2025-3-22 20:37:03 | 只看該作者
8#
發(fā)表于 2025-3-22 21:17:12 | 只看該作者
Why Ensemble Techniques Are Needed, context of musicians who regularly play together. An ensemble of musicians is the sum of individual compositions by multiple musicians. Similarly, in machine learning, . is a combination of multiple machine learning techniques performed together.
9#
發(fā)表于 2025-3-23 02:47:05 | 只看該作者
10#
發(fā)表于 2025-3-23 09:03:25 | 只看該作者
Gillian McCann,Gitte BechsgaardIn Chapter ., you learned how to divide and mix training data in different ways to build ensemble models, which perform better than a model that was trained on an undivided dataset.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 07:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白水县| 眉山市| 乌审旗| 绵竹市| 甘南县| 喀喇沁旗| 德格县| 怀宁县| 江门市| 上虞市| 礼泉县| 克什克腾旗| 句容市| 高淳县| 汤原县| 凤阳县| 乡宁县| 临安市| 长子县| 清涧县| 民乐县| 德格县| 潜江市| 兰溪市| 叙永县| 读书| 隆昌县| 洞头县| 中牟县| 巨鹿县| 色达县| 霸州市| 海阳市| 翁牛特旗| 城口县| 肃南| 民县| 大英县| 安顺市| 焉耆| 衡水市|