找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Enriques Surfaces I; Fran?ois R. Cossec,Igor V. Dolgachev Book 1989 Birkh?user Boston 1989 Divisor.Grad.Jacobi.algebra.algebraic surface

[復(fù)制鏈接]
樓主: T-cell
11#
發(fā)表于 2025-3-23 13:16:55 | 只看該作者
12#
發(fā)表于 2025-3-23 14:15:18 | 只看該作者
13#
發(fā)表于 2025-3-23 18:42:01 | 只看該作者
Preliminaries,A morphism f: X → Y of integral schemes over an algebraically closed field K is called a . if f is finite and of degree 2. A double cover is said to be . (resp. . if the corresponding extension of the fields of rational functions is separable (resp. inseparable).
14#
發(fā)表于 2025-3-24 00:54:14 | 只看該作者
Enriques Surfaces: Generalities,Let K be an algebraically closed field of arbitrary characteristic p. In this section we recall the main results of the classification of nonsingular projective surfaces over K. We refer to . for the proofs of all the assertions peculiar to the case of positive characteristic and to general textbooks . for the case of characteristic zero.
15#
發(fā)表于 2025-3-24 04:47:30 | 只看該作者
Lattices and Root Bases,A . is a free abelian group M of finite rank rk(M) equipped with a symmetric bilinear form ?:MxM → .. The value of this form on a pair (x,y)∈MxM will be denoted by x?y. We write x. to denote x?x.
16#
發(fā)表于 2025-3-24 07:28:20 | 只看該作者
17#
發(fā)表于 2025-3-24 12:23:22 | 只看該作者
18#
發(fā)表于 2025-3-24 16:36:35 | 只看該作者
Genus One Fibration,Let S be a regular integral scheme of dimension 1, η be its generic point and K = K(η) be its residue field. A projective morphism f: X → S is said to be . if X is regular and irreducible, and the general fibre X. is a geometrically integral regular algebraic curve of arithmetic genus 1.
19#
發(fā)表于 2025-3-24 20:31:51 | 只看該作者
https://doi.org/10.1007/978-3-319-50775-0e of them to give the first examples of nonrational algebraic surfaces on which there are no regular differential forms. At the same time a different construction of such surfaces was given by another Italian geometer, no less famous, Guido Castelnuovo. The original construction of Enriques gives a
20#
發(fā)表于 2025-3-24 23:51:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 21:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定日县| 尚志市| 珲春市| 淮安市| 宿迁市| 潜江市| 高邑县| 普格县| 富蕴县| 泰兴市| 衢州市| 尚志市| 利辛县| 宝山区| 库伦旗| 平泉县| 霍林郭勒市| 垣曲县| 陕西省| 鄂州市| 临海市| 张家口市| 铅山县| 锡林郭勒盟| 孝义市| 纳雍县| 临武县| 固镇县| 冕宁县| 时尚| 平潭县| 湘潭县| 蓬溪县| 军事| 那坡县| 嘉荫县| 广昌县| 孟津县| 田东县| 利川市| 进贤县|