找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Enric Trillas: A Passion for Fuzzy Sets; A Collection of Rece Luis Magdalena,Jose Luis Verdegay,Francesc Esteva Book 2015 Springer Internat

[復(fù)制鏈接]
樓主: Manipulate
31#
發(fā)表于 2025-3-27 00:35:35 | 只看該作者
32#
發(fā)表于 2025-3-27 03:30:03 | 只看該作者
https://doi.org/10.1007/978-3-642-60463-8ies of those aggregation functions and of several properties considered in the literature as indicators of consistency, it seems reasonable that the global monotonicity can be taken as a minimum requirement for an extended aggregation function to be considered consistent.
33#
發(fā)表于 2025-3-27 06:11:02 | 只看該作者
https://doi.org/10.1007/978-94-007-4629-9y Trillas in 1979. We also show that interval type-2 fuzzy sets are a three dimensional representation of interval-valued fuzzy sets and we analyze the problems to build complementation for such interval type-2 fuzzy sets. We finally propose a method to construct this complementation.
34#
發(fā)表于 2025-3-27 11:06:11 | 只看該作者
35#
發(fā)表于 2025-3-27 16:58:27 | 只看該作者
The Role of Microbes in Autoimmune Diseasesal-life situations leading to some new concepts, approaches and methods which are being explored mainly along the last two decades. This paper aims to summarize some of the most remarkable divergences and meeting points between the two sources of uncertainty, and the interest of combining them from a statistical perspective.
36#
發(fā)表于 2025-3-27 18:33:41 | 只看該作者
37#
發(fā)表于 2025-3-27 23:04:58 | 只看該作者
38#
發(fā)表于 2025-3-28 05:24:48 | 只看該作者
A Classification Theorem for Continuous Quasi-Uninorms,s, t-conorms and isomorphism of the Dombi operator .. In other words, continuous quasi-uninorms with neutral element 1 are t-norms, continuous quasi-uninorms with neutral element 0 are t-conorms, and all continuous quasi-uninorms with neutral element in . are isomorphics, with Dombi operator being their prototypical representative.
39#
發(fā)表于 2025-3-28 09:24:12 | 只看該作者
40#
發(fā)表于 2025-3-28 12:28:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
田阳县| 深水埗区| 静海县| 宿州市| 湾仔区| 华蓥市| 长沙市| 方山县| 酒泉市| 商河县| 科技| 茶陵县| 从江县| 沽源县| 剑阁县| 县级市| 东光县| 墨玉县| 如东县| 盐边县| 临西县| 罗源县| 大姚县| 新平| 余干县| 富民县| 武功县| 香河县| 杂多县| 当涂县| 确山县| 龙山县| 卢湾区| 兰西县| 滨州市| 从化市| 湖口县| 广饶县| 原阳县| 漠河县| 克山县|