找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering of Additive Manufacturing Features for Data-Driven Solutions; Sources, Techniques, Mutahar Safdar,Guy Lamouche,Yaoyao Fiona Zha

[復(fù)制鏈接]
查看: 22597|回復(fù): 36
樓主
發(fā)表于 2025-3-21 17:43:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Engineering of Additive Manufacturing Features for Data-Driven Solutions
副標題Sources, Techniques,
編輯Mutahar Safdar,Guy Lamouche,Yaoyao Fiona Zhao
視頻videohttp://file.papertrans.cn/312/311030/311030.mp4
概述A comprehensive introduction to data-driven additive manufacturing (AM).Covers all data sources and parts of the AM process.Updates readers with the current challenges and future directions
叢書名稱SpringerBriefs in Applied Sciences and Technology
圖書封面Titlebook: Engineering of Additive Manufacturing Features for Data-Driven Solutions; Sources, Techniques, Mutahar Safdar,Guy Lamouche,Yaoyao Fiona Zha
描述.This book is a comprehensive guide to the latest developments in data-driven additive manufacturing (AM). From data mining and pre-processing to signal processing, computer vision, and more, the book covers all the essential techniques for preparing AM data. Readers willl explore the key physical and synthetic sources of AM data throughout the life cycle of the process and learn about feature engineering techniques, pipelines, and resulting features, as well as their applications at each life cycle phase. With a focus on featurization efforts from reviewed literature, this book offers tabular summaries for major data sources and analyzes feature spaces at the design, process, and structure phases of AM to uncover trends and insights specific to feature engineering techniques. Finally, the book discusses current challenges and future directions, including AI/ML/DL readiness of AM data...Whether you‘re an expert or newcomer to the field, this book provides a broader summary ofthe status and future of?data-driven AM technology..
出版日期Book 2023
關(guān)鍵詞Data-driven Additive Manufacturing; Feature Engineering; Data Preparation and Preprocessing; Raw Data T
版次1
doihttps://doi.org/10.1007/978-3-031-32154-2
isbn_softcover978-3-031-32153-5
isbn_ebook978-3-031-32154-2Series ISSN 2191-530X Series E-ISSN 2191-5318
issn_series 2191-530X
copyrightCrown 2023
The information of publication is updating

書目名稱Engineering of Additive Manufacturing Features for Data-Driven Solutions影響因子(影響力)




書目名稱Engineering of Additive Manufacturing Features for Data-Driven Solutions影響因子(影響力)學科排名




書目名稱Engineering of Additive Manufacturing Features for Data-Driven Solutions網(wǎng)絡(luò)公開度




書目名稱Engineering of Additive Manufacturing Features for Data-Driven Solutions網(wǎng)絡(luò)公開度學科排名




書目名稱Engineering of Additive Manufacturing Features for Data-Driven Solutions被引頻次




書目名稱Engineering of Additive Manufacturing Features for Data-Driven Solutions被引頻次學科排名




書目名稱Engineering of Additive Manufacturing Features for Data-Driven Solutions年度引用




書目名稱Engineering of Additive Manufacturing Features for Data-Driven Solutions年度引用學科排名




書目名稱Engineering of Additive Manufacturing Features for Data-Driven Solutions讀者反饋




書目名稱Engineering of Additive Manufacturing Features for Data-Driven Solutions讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:47:24 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:40:34 | 只看該作者
地板
發(fā)表于 2025-3-22 07:25:48 | 只看該作者
5#
發(fā)表于 2025-3-22 10:19:08 | 只看該作者
2191-530X with the current challenges and future directions.This book is a comprehensive guide to the latest developments in data-driven additive manufacturing (AM). From data mining and pre-processing to signal processing, computer vision, and more, the book covers all the essential techniques for preparing
6#
發(fā)表于 2025-3-22 15:46:55 | 只看該作者
https://doi.org/10.1007/978-981-19-3334-9ied and used to group the applications of feature engineering in AM. Their applications are discussed in detail in the subsequent sections of this chapter. A key feature of this chapter is its tabular summaries where detailed feature engineering pipelines are presented and linked with feature source, feature form, and feature applications.
7#
發(fā)表于 2025-3-22 20:19:19 | 只看該作者
Mutahar Safdar,Guy Lamouche,Yaoyao Fiona ZhaoA comprehensive introduction to data-driven additive manufacturing (AM).Covers all data sources and parts of the AM process.Updates readers with the current challenges and future directions
8#
發(fā)表于 2025-3-22 21:58:52 | 只看該作者
9#
發(fā)表于 2025-3-23 05:07:41 | 只看該作者
10#
發(fā)表于 2025-3-23 09:06:24 | 只看該作者
https://doi.org/10.1007/978-981-19-3334-9 grouped into design, process, and post-process categories. In each of these categories, major sources of additive manufacturing (AM) data are identified and used to group the applications of feature engineering in AM. Their applications are discussed in detail in the subsequent sections of this cha
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
榆树市| 滨州市| 黎城县| 高台县| 新昌县| 金坛市| 枣庄市| 南溪县| 万州区| 紫金县| 年辖:市辖区| 永靖县| 嘉祥县| 肥西县| 涟源市| 西昌市| 靖州| 台南市| 榆中县| 永新县| 固原市| 昌宁县| 抚州市| 古蔺县| 靖州| 平阴县| 九寨沟县| 尚义县| 利辛县| 望谟县| 柞水县| 威宁| 马边| 观塘区| 四子王旗| 泸溪县| 桐柏县| 体育| 汪清县| 沽源县| 栾城县|