找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering Mathematics by Example; Vol. II: Calculus Robert Sobot Textbook 2023Latest edition The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
樓主: FLAW
11#
發(fā)表于 2025-3-23 11:46:24 | 只看該作者
12#
發(fā)表于 2025-3-23 16:02:59 | 只看該作者
13#
發(fā)表于 2025-3-23 18:43:54 | 只看該作者
14#
發(fā)表于 2025-3-24 00:44:49 | 只看該作者
arate books: ?the topics of algebra, complex algebra, and linear algebra (Vol. I), calculus of single and multiple argument functions (Vol. II), and continues and discrete Convolution and Fourier integrals/sums of typical functions used in signal processing, in addition to Laplace transform examples ?(Vol. III).978-3-031-41198-4978-3-031-41196-0
15#
發(fā)表于 2025-3-24 06:22:04 | 只看該作者
Integrals, or more curves. If the integration is done without specified interval, it is referred to as “indefinite integral” (also known as the antiderivative). In this chapter, classic problem forms and integration techniques are systematically organized in respect to complexity.
16#
發(fā)表于 2025-3-24 10:31:50 | 只看該作者
Limits, to do differential and integral calculations. Classical methods to calculate the limiting values at given points and to analyze points of discontinuity as well as techniques for derivative and integral calculations and function analysis are the topic of this chapter.
17#
發(fā)表于 2025-3-24 13:45:54 | 只看該作者
https://doi.org/10.1007/978-1-349-11476-4 or more curves. If the integration is done without specified interval, it is referred to as “indefinite integral” (also known as the antiderivative). In this chapter, classic problem forms and integration techniques are systematically organized in respect to complexity.
18#
發(fā)表于 2025-3-24 15:59:18 | 只看該作者
Textbook 2023Latest editionnear algebra (Vol. I), calculus of single and multiple argument functions (Vol. II), and continues and discrete Convolution and Fourier integrals/sums of typical functions used in signal processing, in addition to Laplace transform examples ?(Vol. III).
19#
發(fā)表于 2025-3-24 19:34:32 | 只看該作者
20#
發(fā)表于 2025-3-25 00:18:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆阳市| 白城市| 玉田县| 思南县| 深水埗区| 长顺县| 平谷区| 卫辉市| 吉水县| 安阳市| 香格里拉县| 遂溪县| 繁峙县| 榆林市| 鄂尔多斯市| 巴塘县| 普定县| 阳新县| 鲁山县| 台东县| 康马县| 镇宁| 蓬安县| 沂水县| 大洼县| 兴义市| 孝义市| 巴东县| 循化| 仙桃市| 健康| 鄱阳县| 朝阳县| 涟源市| 普洱| 平罗县| 万安县| 淮阳县| 龙陵县| 苗栗市| 藁城市|