找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering Mathematics by Example; Vol. II: Calculus Robert Sobot Textbook 2023Latest edition The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
樓主: FLAW
11#
發(fā)表于 2025-3-23 11:46:24 | 只看該作者
12#
發(fā)表于 2025-3-23 16:02:59 | 只看該作者
13#
發(fā)表于 2025-3-23 18:43:54 | 只看該作者
14#
發(fā)表于 2025-3-24 00:44:49 | 只看該作者
arate books: ?the topics of algebra, complex algebra, and linear algebra (Vol. I), calculus of single and multiple argument functions (Vol. II), and continues and discrete Convolution and Fourier integrals/sums of typical functions used in signal processing, in addition to Laplace transform examples ?(Vol. III).978-3-031-41198-4978-3-031-41196-0
15#
發(fā)表于 2025-3-24 06:22:04 | 只看該作者
Integrals, or more curves. If the integration is done without specified interval, it is referred to as “indefinite integral” (also known as the antiderivative). In this chapter, classic problem forms and integration techniques are systematically organized in respect to complexity.
16#
發(fā)表于 2025-3-24 10:31:50 | 只看該作者
Limits, to do differential and integral calculations. Classical methods to calculate the limiting values at given points and to analyze points of discontinuity as well as techniques for derivative and integral calculations and function analysis are the topic of this chapter.
17#
發(fā)表于 2025-3-24 13:45:54 | 只看該作者
https://doi.org/10.1007/978-1-349-11476-4 or more curves. If the integration is done without specified interval, it is referred to as “indefinite integral” (also known as the antiderivative). In this chapter, classic problem forms and integration techniques are systematically organized in respect to complexity.
18#
發(fā)表于 2025-3-24 15:59:18 | 只看該作者
Textbook 2023Latest editionnear algebra (Vol. I), calculus of single and multiple argument functions (Vol. II), and continues and discrete Convolution and Fourier integrals/sums of typical functions used in signal processing, in addition to Laplace transform examples ?(Vol. III).
19#
發(fā)表于 2025-3-24 19:34:32 | 只看該作者
20#
發(fā)表于 2025-3-25 00:18:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连城县| 新龙县| 高邮市| 内乡县| 武穴市| 沿河| 安西县| 武鸣县| 唐海县| 文山县| 乌什县| 沂南县| 英德市| 天镇县| 方山县| 奉贤区| 高安市| 师宗县| 信阳市| 布尔津县| 淮滨县| 海晏县| 穆棱市| 宁陕县| 贵定县| 横峰县| 苗栗县| 凤冈县| 剑阁县| 义马市| 呼玛县| 外汇| 财经| 杂多县| 山阴县| 孟津县| 旅游| 延津县| 葫芦岛市| 镇原县| 通化市|