找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering Mathematics by Example; Vol. II: Calculus Robert Sobot Textbook 2023Latest edition The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
樓主: FLAW
11#
發(fā)表于 2025-3-23 11:46:24 | 只看該作者
12#
發(fā)表于 2025-3-23 16:02:59 | 只看該作者
13#
發(fā)表于 2025-3-23 18:43:54 | 只看該作者
14#
發(fā)表于 2025-3-24 00:44:49 | 只看該作者
arate books: ?the topics of algebra, complex algebra, and linear algebra (Vol. I), calculus of single and multiple argument functions (Vol. II), and continues and discrete Convolution and Fourier integrals/sums of typical functions used in signal processing, in addition to Laplace transform examples ?(Vol. III).978-3-031-41198-4978-3-031-41196-0
15#
發(fā)表于 2025-3-24 06:22:04 | 只看該作者
Integrals, or more curves. If the integration is done without specified interval, it is referred to as “indefinite integral” (also known as the antiderivative). In this chapter, classic problem forms and integration techniques are systematically organized in respect to complexity.
16#
發(fā)表于 2025-3-24 10:31:50 | 只看該作者
Limits, to do differential and integral calculations. Classical methods to calculate the limiting values at given points and to analyze points of discontinuity as well as techniques for derivative and integral calculations and function analysis are the topic of this chapter.
17#
發(fā)表于 2025-3-24 13:45:54 | 只看該作者
https://doi.org/10.1007/978-1-349-11476-4 or more curves. If the integration is done without specified interval, it is referred to as “indefinite integral” (also known as the antiderivative). In this chapter, classic problem forms and integration techniques are systematically organized in respect to complexity.
18#
發(fā)表于 2025-3-24 15:59:18 | 只看該作者
Textbook 2023Latest editionnear algebra (Vol. I), calculus of single and multiple argument functions (Vol. II), and continues and discrete Convolution and Fourier integrals/sums of typical functions used in signal processing, in addition to Laplace transform examples ?(Vol. III).
19#
發(fā)表于 2025-3-24 19:34:32 | 只看該作者
20#
發(fā)表于 2025-3-25 00:18:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
文昌市| 石楼县| 满洲里市| 皮山县| 福贡县| 婺源县| 抚宁县| 苍山县| 郁南县| 新龙县| 庆城县| 西宁市| 巴楚县| 益阳市| 平顺县| 谢通门县| 新津县| 麟游县| 灵寿县| 抚州市| 湘西| 电白县| 丽水市| 辽阳市| 新龙县| 南通市| 沽源县| 筠连县| 东乌珠穆沁旗| 泸西县| 辉南县| 工布江达县| 胶南市| 枣庄市| 湖北省| 晋宁县| 苗栗市| 霸州市| 石河子市| 石城县| 瑞金市|