找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering Elasticity; Elasticity with less Humphrey Hardy Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: 并排一起
11#
發(fā)表于 2025-3-23 11:57:08 | 只看該作者
12#
發(fā)表于 2025-3-23 15:52:44 | 只看該作者
13#
發(fā)表于 2025-3-23 18:36:37 | 只看該作者
978-3-031-09159-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
14#
發(fā)表于 2025-3-24 01:32:36 | 只看該作者
15#
發(fā)表于 2025-3-24 05:50:53 | 只看該作者
,Gültigkeitskontrolle eines Datums,?The forces acting on any region within a body are described and the equation of motion is derived in terms of forces.?The forces acting within a body are described in terms of engineering stress.?The equation of motion (i.e. the sum of forces equal the mass times the acceleration) is defined in terms of the engineering stress.
16#
發(fā)表于 2025-3-24 10:21:33 | 只看該作者
https://doi.org/10.1007/978-3-662-13118-3The relationship between force and energy is described and the equation of motion in terms of energy is derived. Engineering stress is defined in terms of energy which allows the equation of motion to be described in terms of energy. Energy is assumed to be a function of the positions and relative positions of the points within the body.
17#
發(fā)表于 2025-3-24 13:09:43 | 只看該作者
,Allgemeine Hinweise für die Praxis,The constraints on the representation of energy for an isotropic body are described. Isotropic material must be invariant to rotations both before and after a deformation is applied. This requires the energy to be described in terms of invariants of the deformation gradient matrix.
18#
發(fā)表于 2025-3-24 18:54:54 | 只看該作者
Masahiko Higashi,Norio Yamamura,Takuya AbeQuasi-static deformations of isotropic bodies are defined in terms of minimizing the energy of deformation.?The equation of motion introduced in Chapter 4 and the definition of invariants in Chapter 5 allow the solution of the deformation of bodies to be done in terms of finite elements.
19#
發(fā)表于 2025-3-24 19:18:52 | 只看該作者
20#
發(fā)表于 2025-3-25 02:08:51 | 只看該作者
https://doi.org/10.1007/978-3-319-76421-4An experimental procedure to determine the invarints for an isotropic body is described?and an energy function is?found for a specific?elastic material.?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湘乡市| 扶绥县| 长丰县| 黄陵县| 吉首市| 萝北县| 礼泉县| 宁都县| 丹阳市| 沙坪坝区| 即墨市| 牙克石市| 历史| 黎城县| 遂溪县| 宝坻区| 潼南县| 文水县| 恭城| 湘潭市| 南雄市| 南部县| 杂多县| 方山县| 新沂市| 商河县| 石台县| 兴山县| 台北县| 双鸭山市| 丰顺县| 开阳县| 安多县| 石泉县| 古田县| 兖州市| 梅州市| 青冈县| 龙陵县| 桑日县| 上虞市|