找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering Dependable and Secure Machine Learning Systems; Third International Onn Shehory,Eitan Farchi,Guy Barash Conference proceedings

[復(fù)制鏈接]
樓主: Coronary-Artery
31#
發(fā)表于 2025-3-27 00:05:54 | 只看該作者
Principal Component Properties of Adversarial Samples,a benign image that can easily fool trained neural networks, posing a significant risk to their commercial deployment. In this work, we analyze adversarial samples through the lens of their contributions to the principal components of . image, which is different than prior works in which authors per
32#
發(fā)表于 2025-3-27 02:09:38 | 只看該作者
33#
發(fā)表于 2025-3-27 08:50:46 | 只看該作者
Density Estimation in Representation Space to Predict Model Uncertainty,ir training dataset. We propose a novel and straightforward approach to estimate prediction uncertainty in a pre-trained neural network model. Our method estimates the training data density in representation space for a novel input. A neural network model then uses this information to determine whet
34#
發(fā)表于 2025-3-27 11:14:04 | 只看該作者
Automated Detection of Drift in Deep Learning Based Classifiers Performance Using Network Embeddingly sampled test set is used to estimate the performance (e.g., accuracy) of the neural network during deployment time. The performance on the test set is used to project the performance of the neural network at deployment time under the implicit assumption that the data distribution of the test set
35#
發(fā)表于 2025-3-27 16:41:21 | 只看該作者
36#
發(fā)表于 2025-3-27 19:29:28 | 只看該作者
Dependable Neural Networks for Safety Critical Tasks, perform safely in novel scenarios. It is challenging to verify neural networks because their decisions are not explainable, they cannot be exhaustively tested, and finite test samples cannot capture the variation across all operating conditions. Existing work seeks to train models robust to new sce
37#
發(fā)表于 2025-3-27 22:21:19 | 只看該作者
38#
發(fā)表于 2025-3-28 05:32:03 | 只看該作者
Neue Entwicklungen und Zukunftsperspektiven,TSRB and MS-COCO. Our initial results suggest that using attention mask leads to improved robustness. On the adversarially trained classifiers, we see an adversarial robustness increase of over 20% on MS-COCO.
39#
發(fā)表于 2025-3-28 07:59:39 | 只看該作者
40#
發(fā)表于 2025-3-28 11:58:23 | 只看該作者
Technischer Lehrgang: Hydraulische Systemeerformance assessment. Here we demonstrate a novel technique, called IBM FreaAI, which automatically extracts explainable feature slices for which the ML solution’s performance is statistically significantly worse than the average. We demonstrate results of evaluating ML classifier models on seven o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 17:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安远县| 安新县| 土默特左旗| 色达县| 兴仁县| 含山县| 淮北市| 临沭县| 烟台市| 米泉市| 黄梅县| 砚山县| 连州市| 方城县| 北宁市| 曲阳县| 京山县| 六安市| 左权县| 施秉县| 南靖县| 徐州市| 西吉县| 绵阳市| 福安市| 永宁县| 泰来县| 红原县| 新干县| 阳山县| 永仁县| 凤城市| 山东省| 曲水县| 平陆县| 蓬莱市| 汝城县| 新营市| 翁牛特旗| 洪江市| 望谟县|