找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering Applications of Neural Networks; 16th International C Lazaros Iliadis,Chrisina Jayne Conference proceedings 2015 Springer Inter

[復(fù)制鏈接]
樓主: controllers
11#
發(fā)表于 2025-3-23 12:38:19 | 只看該作者
12#
發(fā)表于 2025-3-23 14:02:04 | 只看該作者
https://doi.org/10.1007/978-1-349-09001-3n locally optimized parameters and globally optimized parameters. The multithreaded local learning regularization neural networks are implemented with OpenMP. The accuracy of the algorithms is tested against several benchmark datasets. The parallel efficiency and speedup is evaluated on a multi-core system.
13#
發(fā)表于 2025-3-23 20:39:51 | 只看該作者
On-line Surface Roughness Prediction in Grinding Using Recurrent Neural Networks in this work the prediction of the surface roughness (..) evolution based on Recurrent Neural Networks is presented with the capability to generalize to new grinding wheels and conditions. Results show excellent prediction of the surface finish evolution. The absolute maximum error is below 0.49μm, being the average error around 0.32μm.
14#
發(fā)表于 2025-3-23 23:16:55 | 只看該作者
15#
發(fā)表于 2025-3-24 05:30:43 | 只看該作者
16#
發(fā)表于 2025-3-24 06:35:16 | 只看該作者
Multithreaded Local Learning Regularization Neural Networks for Regression Tasksn locally optimized parameters and globally optimized parameters. The multithreaded local learning regularization neural networks are implemented with OpenMP. The accuracy of the algorithms is tested against several benchmark datasets. The parallel efficiency and speedup is evaluated on a multi-core system.
17#
發(fā)表于 2025-3-24 13:44:46 | 只看該作者
18#
發(fā)表于 2025-3-24 15:17:07 | 只看該作者
Self-Train LogitBoost for Semi-supervised Learninghe?Logitboost regression tree model?is more confident?at the unlabeled instances.?We performed a comparison with other well-known semi-supervised classification methods on standard benchmark datasets and the presented technique had better accuracy in most cases.
19#
發(fā)表于 2025-3-24 23:05:53 | 只看該作者
Conference proceedings 2015ormatics; intelligent medical modeling; life-earth sciences intelligent modeling; learning-algorithms; intelligent telecommunications modeling; fuzzy modeling; robotics and control; smart cameras; pattern recognition-facial mapping; classification; financial intelligent modeling; echo state networks..
20#
發(fā)表于 2025-3-25 00:12:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
明水县| 肥乡县| 永丰县| 黄龙县| 马关县| 罗城| 东乌| 太保市| 甘孜| 疏勒县| 海淀区| 双城市| 多伦县| 福鼎市| 崇明县| 高阳县| 唐海县| 旅游| 柯坪县| 简阳市| 老河口市| 安达市| 杂多县| 海丰县| 大庆市| 旬阳县| 厦门市| 伽师县| 阿城市| 梧州市| 石家庄市| 霍山县| 蒲江县| 子长县| 苗栗县| 中超| 临沂市| 荥阳市| 西峡县| 增城市| 遂川县|