找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering Applications of Neural Networks; 23rd International C Lazaros Iliadis,Chrisina Jayne,Elias Pimenidis Conference proceedings 202

[復(fù)制鏈接]
樓主: fundoplication
51#
發(fā)表于 2025-3-30 10:59:02 | 只看該作者
Route Scheduling System for?Multiple Self-driving Cars Using K-means and?Bio-inspired AlgorithmsS against GA, ACS and Particle Swarm Optimization (PSO) initialized with random population. The results showed that, as the number of cars and target locations increase, the hybrid approaches outperform GA, ACS and PSO without any pre-processing.
52#
發(fā)表于 2025-3-30 12:40:08 | 只看該作者
Novel Decision Forest Building Techniques by?Utilising Correlation Coefficient Methodsl results indicate that the proposed methods have the best average ensemble accuracy rank of 1.3 (for MICF) and 3.0 (for PCCF), compared to their closest competitor, Random Forest (RF), which has an average rank of 4.3. Additionally, the results from Friedman and Bonferroni-Dunn tests indicate statistically significant improvement.
53#
發(fā)表于 2025-3-30 19:52:26 | 只看該作者
54#
發(fā)表于 2025-3-30 23:21:51 | 只看該作者
55#
發(fā)表于 2025-3-31 02:53:57 | 只看該作者
56#
發(fā)表于 2025-3-31 05:30:17 | 只看該作者
57#
發(fā)表于 2025-3-31 12:41:53 | 只看該作者
Evaluating Acceleration Techniques for?Genetic Neural Architecture Searchensive neural architecture search approach, and aims to pave the way for speeding up such algorithms by assessing the effect of acceleration methods on the overall performance of the neural architecture search procedure as well as on the produced architectures.
58#
發(fā)表于 2025-3-31 15:42:51 | 只看該作者
Generation of Orthogonality for Feature Spaces in the Bio-inspired Neural Networksrthogonality basis functions create better tracking results. Thus, asymmetric structure of the network and its nonlinear characteristics are shown to be effective factors for generating orthogonality.
59#
發(fā)表于 2025-3-31 18:09:49 | 只看該作者
60#
發(fā)表于 2025-3-31 22:26:45 | 只看該作者
The Effectiveness of?Synchronous Data-parallel Differentiable Architecture Searchinal results due to the pruning before extracting the final network. As a result, we achieve a speedup of 1.82 for two GPU workers and a 3.18 speedup for four GPU workers while retaining the same qualitative results as serially executing DARTS.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 08:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
维西| 怀宁县| 衡水市| 安图县| 亳州市| 阜康市| 西乌珠穆沁旗| 文山县| 泰来县| 大同县| 贵州省| 汝阳县| 大洼县| 高青县| 永靖县| 蓝山县| 木兰县| 米易县| 阜阳市| 西藏| 青冈县| 宁阳县| 涞源县| 宜兰县| 安泽县| 康马县| 中阳县| 溧水县| 上犹县| 岱山县| 鹤山市| 神木县| 新民市| 延边| 亚东县| 普洱| 楚雄市| 微山县| 林芝县| 垦利县| 洛扎县|