找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering Applications of Neural Networks; 23rd International C Lazaros Iliadis,Chrisina Jayne,Elias Pimenidis Conference proceedings 202

[復(fù)制鏈接]
樓主: fundoplication
51#
發(fā)表于 2025-3-30 10:59:02 | 只看該作者
Route Scheduling System for?Multiple Self-driving Cars Using K-means and?Bio-inspired AlgorithmsS against GA, ACS and Particle Swarm Optimization (PSO) initialized with random population. The results showed that, as the number of cars and target locations increase, the hybrid approaches outperform GA, ACS and PSO without any pre-processing.
52#
發(fā)表于 2025-3-30 12:40:08 | 只看該作者
Novel Decision Forest Building Techniques by?Utilising Correlation Coefficient Methodsl results indicate that the proposed methods have the best average ensemble accuracy rank of 1.3 (for MICF) and 3.0 (for PCCF), compared to their closest competitor, Random Forest (RF), which has an average rank of 4.3. Additionally, the results from Friedman and Bonferroni-Dunn tests indicate statistically significant improvement.
53#
發(fā)表于 2025-3-30 19:52:26 | 只看該作者
54#
發(fā)表于 2025-3-30 23:21:51 | 只看該作者
55#
發(fā)表于 2025-3-31 02:53:57 | 只看該作者
56#
發(fā)表于 2025-3-31 05:30:17 | 只看該作者
57#
發(fā)表于 2025-3-31 12:41:53 | 只看該作者
Evaluating Acceleration Techniques for?Genetic Neural Architecture Searchensive neural architecture search approach, and aims to pave the way for speeding up such algorithms by assessing the effect of acceleration methods on the overall performance of the neural architecture search procedure as well as on the produced architectures.
58#
發(fā)表于 2025-3-31 15:42:51 | 只看該作者
Generation of Orthogonality for Feature Spaces in the Bio-inspired Neural Networksrthogonality basis functions create better tracking results. Thus, asymmetric structure of the network and its nonlinear characteristics are shown to be effective factors for generating orthogonality.
59#
發(fā)表于 2025-3-31 18:09:49 | 只看該作者
60#
發(fā)表于 2025-3-31 22:26:45 | 只看該作者
The Effectiveness of?Synchronous Data-parallel Differentiable Architecture Searchinal results due to the pruning before extracting the final network. As a result, we achieve a speedup of 1.82 for two GPU workers and a 3.18 speedup for four GPU workers while retaining the same qualitative results as serially executing DARTS.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 08:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝清县| 定陶县| 富蕴县| 北辰区| 巴南区| 阿克陶县| 阳山县| 阳信县| 开化县| 定兴县| 闵行区| 兴城市| 乌苏市| 鹿邑县| 娄烦县| 乌拉特前旗| 松潘县| 伊金霍洛旗| 西宁市| 黄浦区| 万州区| 台中县| 龙泉市| 勐海县| 呼和浩特市| 江津市| 宣威市| 柳河县| 抚远县| 郧西县| 永福县| 岚皋县| 花垣县| 永济市| 辽阳县| 霞浦县| 千阳县| 博爱县| 天等县| 长宁县| 台东县|