找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering Applications of Modern Metaheuristics; Taymaz Akan,Ahmed M. Anter,Diego Oliva Book 2023 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: 人工合成
41#
發(fā)表于 2025-3-28 18:08:24 | 只看該作者
42#
發(fā)表于 2025-3-28 21:37:02 | 只看該作者
Optimizing a Real Case Assembly Line Balancing Problem Using Various Techniques,ositional Weight (RPW), a modified version of RPW which is called Revised-RPW, and the Revised-COMSOAL, which is a recent-proposed, and one of the most efficient heuristic methods, are used to balance the production line and workstations, assuming deterministic tasks’ processing times.
43#
發(fā)表于 2025-3-29 00:36:57 | 只看該作者
Multi-circle Detection Using Multimodal Optimization,arm optimization (PSO) and local search is employed to locate all exciting circle in the image. The experiments on benchmark images show that our scheme can perform multi circle detection successfully.
44#
發(fā)表于 2025-3-29 06:50:19 | 只看該作者
H. Block,J. Ertelt,B. Nackunstz), salp swarm algorithm (SSA), and tree-seed algorithm (TSA)—are used for solving the minimum TPC optimization problem. The obtained results, convergence graphs, and standard deviations are showed that ABC is the best swarm intelligence algorithm, and the TSA is the most robust algorithm in this experimental environment.
45#
發(fā)表于 2025-3-29 09:58:23 | 只看該作者
46#
發(fā)表于 2025-3-29 11:52:55 | 只看該作者
47#
發(fā)表于 2025-3-29 19:37:48 | 只看該作者
48#
發(fā)表于 2025-3-29 20:08:15 | 只看該作者
A Meta-Heuristic Algorithm Based on the Happiness Model,m and some well-known algorithms will be 30 times applied on the benchmark functions and then compared with statistical value and Wilcoxon signed-rank test. As a consequence, the performance, reliability, and stability of our work have been demonstrated better than the others.
49#
發(fā)表于 2025-3-30 01:05:41 | 只看該作者
,Optimization of?Demand Response,ptimization techniques for solving the complex demand response problem is presented. It also discusses various factors that affect the demand response and its problem formulation. In the end a list of publications are enlisted which have used evolutionary optimization techniques to solve demand response.
50#
發(fā)表于 2025-3-30 08:01:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 20:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郸城县| 辽阳县| 饶阳县| 长春市| 勐海县| 重庆市| 肇庆市| 新龙县| 保山市| 新河县| 平南县| 平远县| 和平县| 兰西县| 贵南县| 黄大仙区| 凤山县| 平阴县| 湘西| 遂平县| 永登县| 桃江县| 阳城县| 汉寿县| 囊谦县| 长海县| 象州县| 六盘水市| 扎赉特旗| 南宁市| 青河县| 友谊县| 全州县| 六枝特区| 陆良县| 拉孜县| 榆社县| 新竹市| 陕西省| 惠来县| 额尔古纳市|