找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Energy Minimization Methods in Computer Vision and Pattern Recognition; 5th International Wo Anand Rangarajan,Baba Vemuri,Alan L. Yuille Co

[復制鏈接]
查看: 15571|回復: 63
樓主
發(fā)表于 2025-3-21 19:58:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition
副標題5th International Wo
編輯Anand Rangarajan,Baba Vemuri,Alan L. Yuille
視頻videohttp://file.papertrans.cn/311/310344/310344.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Energy Minimization Methods in Computer Vision and Pattern Recognition; 5th International Wo Anand Rangarajan,Baba Vemuri,Alan L. Yuille Co
出版日期Conference proceedings 2005
關鍵詞3D; Image segmentation; Variable; affine transform; algorithmic learning; clustering; cognition; image anal
版次1
doihttps://doi.org/10.1007/11585978
isbn_softcover978-3-540-30287-2
isbn_ebook978-3-540-32098-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2005
The information of publication is updating

書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition影響因子(影響力)




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition影響因子(影響力)學科排名




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition網絡公開度




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition網絡公開度學科排名




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition被引頻次




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition被引頻次學科排名




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition年度引用




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition年度引用學科排名




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition讀者反饋




書目名稱Energy Minimization Methods in Computer Vision and Pattern Recognition讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:46:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:00:45 | 只看該作者
Optimizing the Cauchy-Schwarz PDF Distance for Information Theoretic, Non-parametric Clusteringemberships of the data patterns, in order to maximize the recent Cauchy-Schwarz (CS) probability density function (pdf) distance measure. Each pdf corresponds to a cluster. The CS distance is estimated analytically and non-parametrically by means of the Parzen window technique for density estimation
地板
發(fā)表于 2025-3-22 08:02:18 | 只看該作者
5#
發(fā)表于 2025-3-22 09:42:48 | 只看該作者
6#
發(fā)表于 2025-3-22 15:01:36 | 只看該作者
Bayesian Image Segmentation Using Gaussian Field Priorsally discrete problem. Bayesian approaches to segmentation use priors to impose spatial coherence; the discrete nature of segmentation demands priors defined on discrete-valued fields, thus leading to difficult combinatorial problems..This paper presents a formulation which allows using continuous p
7#
發(fā)表于 2025-3-22 20:46:34 | 只看該作者
Handling Missing Data in the Computation of 3D Affine Transformationsmanner have proven the most effective to deal with large image sequences. One of the key building blocks of these hierarchical approaches is the alignment of two partial 3D models, which requires to express them in the same 3D coordinate frame by computing a 3D transformation. This problem has been
8#
發(fā)表于 2025-3-23 01:10:27 | 只看該作者
9#
發(fā)表于 2025-3-23 02:43:15 | 只看該作者
Deformable-Model Based Textured Object Segmentationces in traditional deformable models come primarily from edges or gradient information and it becomes problematic when the object surfaces have complex large-scale texture patterns that generate many local edges within a same region. We introduce a new textured object segmentation algorithm that has
10#
發(fā)表于 2025-3-23 08:40:29 | 只看該作者
Total Variation Minimization and a Class of Binary MRF Modelsion approach to image denoising. We show, more precisely, that solutions to binary MRFs can be found by minimizing an appropriate ROF problem, and vice-versa. This leads to new algorithms. We then compare the efficiency of various algorithms.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 01:43
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
上犹县| 通河县| 青海省| 红原县| 南汇区| 开平市| 元阳县| 洪洞县| 林芝县| 威信县| 宁乡县| 新巴尔虎右旗| 临颍县| 高雄县| 晴隆县| 平湖市| 榆树市| 遵义县| 穆棱市| 阿图什市| 江西省| 外汇| 诸城市| 清水县| 新建县| 洛宁县| 尉犁县| 乌拉特后旗| 鹿邑县| 澄迈县| 个旧市| 武宣县| 永川市| 苍溪县| 凤庆县| 武义县| 彭阳县| 陇西县| 柞水县| 祁东县| 德惠市|