找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Energy Flow Theory of Nonlinear Dynamical Systems with Applications; Jing Tang Xing Book 2015 Springer International Publishing Switzerlan

[復(fù)制鏈接]
樓主: fundoplication
11#
發(fā)表于 2025-3-23 11:56:53 | 只看該作者
First Order Approximations and Matrix Spaces,tem involves only the energy flow matrix and the spin matrix concerns the possible periodical solution of the system. A physical explanation of this summation decomposition is given. The four matrix spaces: Jacobian, energy flow, spin and kinetic energy spaces are defined, and nonlinear dynamical systems are investigated in these four spaces.
12#
發(fā)表于 2025-3-23 16:45:08 | 只看該作者
Book 2015hase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common int
13#
發(fā)表于 2025-3-23 20:01:49 | 只看該作者
2194-7287 sents a set of generalized equations in phase space describi.This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear ph
14#
發(fā)表于 2025-3-23 23:41:29 | 只看該作者
15#
發(fā)表于 2025-3-24 02:40:18 | 只看該作者
Sozialpsychiatrie und Kunsttherapiear variables embedded into the phase space to investigate the energy flow behaviour of nonlinear dynamical systems. The first one involves positions of flow points in phase space and the second one links to the tangent vector, flow directions, in tangent bundle of vector fields.
16#
發(fā)表于 2025-3-24 07:45:55 | 只看該作者
17#
發(fā)表于 2025-3-24 11:39:58 | 只看該作者
Sozialpsychologie der Partnerschafteorem is given and the energy flow characteristic factors are proposed to identify chaotic motions. These characteristics are examined for Lorenz system, R?ssler system, Van der Pol’s equation, Duffing’s oscillator and SD attractor, respectively by analysing or numerical simulations based on Runge-Kutta method.
18#
發(fā)表于 2025-3-24 17:50:59 | 只看該作者
19#
發(fā)表于 2025-3-24 20:45:06 | 只看該作者
Energy Flow of Nonlinear Dynamical Systems,ar variables embedded into the phase space to investigate the energy flow behaviour of nonlinear dynamical systems. The first one involves positions of flow points in phase space and the second one links to the tangent vector, flow directions, in tangent bundle of vector fields.
20#
發(fā)表于 2025-3-25 01:38:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 08:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
聂荣县| 崇阳县| 阿巴嘎旗| 东丰县| 成都市| 长丰县| 清流县| 江油市| 晋城| 如东县| 鹿邑县| 清远市| 麦盖提县| 中江县| 夏津县| 项城市| 垦利县| 博兴县| 吉林市| 比如县| 十堰市| 安平县| 湄潭县| 巩义市| 酒泉市| 长沙县| 南宫市| 涞水县| 福建省| 梨树县| 芦山县| 高密市| 巴南区| 林甸县| 焉耆| 普定县| 岳西县| 日喀则市| 讷河市| 昌邑市| 抚州市|