找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Energy Efficient Computation Offloading in Mobile Edge Computing; Ying Chen,Ning Zhang,Sherman Shen Book 2022 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: GUAFF
11#
發(fā)表于 2025-3-23 13:09:04 | 只看該作者
12#
發(fā)表于 2025-3-23 16:16:05 | 只看該作者
13#
發(fā)表于 2025-3-23 20:38:03 | 只看該作者
Conclusion,In this chapter, we provide a summary of the book and suggest future research directions.
14#
發(fā)表于 2025-3-24 00:21:33 | 只看該作者
Soziale Identit?ten Jugendlichery-deployed and gained more and more attention. Although the development of mobile devices and mobile applications have brought great convenience to people’s production and life, it has also lead to some new issues. Due to the resource limitations of mobile devices, such as limited battery capacity a
15#
發(fā)表于 2025-3-24 02:27:26 | 只看該作者
Degener Theresia,Mogge-Grotjahn Hildegard rapidly. However, the computing capacity of IoT devices is limited and the devices can not process so much data by themselves, which increases the delay and lead to the decline of service quality. Mobile edge computing is a promising computing paradigm, which deploys servers near IoT devices to pro
16#
發(fā)表于 2025-3-24 09:02:46 | 只看該作者
,Das europ?ische Mehrebenensystem,, thus improve users’ service experience. Mobile devices can offload computation-intensive tasks to MEC for computing. MEC can greatly reduce the energy consumption of mobile devices while also extending their battery life. However, task assignment based on MEC becomes more difficult due to the unce
17#
發(fā)表于 2025-3-24 11:53:52 | 只看該作者
https://doi.org/10.1007/978-3-658-33908-1e offloaded to the edge servers for processing, rather than sending them to the remote cloud servers. As a result, the service latency can be greatly improved and the network congestion can be mitigated. In this chapter, we investigate computation offloading in a dynamic MEC system with multiple coo
18#
發(fā)表于 2025-3-24 17:26:02 | 只看該作者
19#
發(fā)表于 2025-3-24 19:02:15 | 只看該作者
https://doi.org/10.1007/978-3-031-16822-2Mobile Edge Computing; Internet Of Things; computation offloading; task scheduling; energy efficiency; dy
20#
發(fā)表于 2025-3-25 01:19:43 | 只看該作者
2366-1186 end-to-end deep reinforcement learning (DRL) approach to select the best edge server for offloading and allocate the optimal computational resource such that the expected long-term utility is maximized. Finally978-3-031-16824-6978-3-031-16822-2Series ISSN 2366-1186 Series E-ISSN 2366-1445
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 04:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
十堰市| 安顺市| 台南县| 新和县| 辉县市| 阜新市| 遂平县| 章丘市| 江油市| 涪陵区| 申扎县| 油尖旺区| 鄂托克前旗| 溧水县| 额尔古纳市| 大竹县| 五常市| 巴青县| 永吉县| 涿州市| 武定县| 黄浦区| 泽州县| 柳州市| 古浪县| 庆元县| 潼南县| 互助| 东台市| 陕西省| 孟州市| 中江县| 定结县| 嵩明县| 江都市| 沂南县| 沅陵县| 崇州市| 茂名市| 邛崃市| 南平市|