找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Endliche K?rper; Verstehen, Rechnen, Hans Kurzweil Textbook 20071st edition Springer-Verlag Berlin Heidelberg 2007 Algebra.Algorithmus.Fou

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 05:34:18 | 只看該作者
22#
發(fā)表于 2025-3-25 09:59:47 | 只看該作者
23#
發(fā)表于 2025-3-25 12:02:26 | 只看該作者
Der Ring der ganzen Zahlen,Letztendlich wird die Addition und Multiplikation in endlichen K?rpern auf die Addition und Multiplikation von ganzen Zahlen zurückgeführt. Deswegen müssen wir die an sich selbstverst?ndlichen Rechenoperationen in ? genauer analysieren.
24#
發(fā)表于 2025-3-25 16:01:54 | 只看該作者
Der Polynomring,Im vorigen Kapitel haben wir den endlichen K?rper ?. gebildet, . Primzahl. Die Elemente eines beliebigen endlichen K?rpers k?nnen als Polynome über dem K?rper ?. aufgefasst werden. Um dies zu erkl?ren, bedarf es einer sorgf?ltigen Darstellung des Polynombegriffs.
25#
發(fā)表于 2025-3-25 21:14:03 | 只看該作者
26#
發(fā)表于 2025-3-26 01:59:53 | 只看該作者
27#
發(fā)表于 2025-3-26 04:25:51 | 只看該作者
28#
發(fā)表于 2025-3-26 10:14:24 | 只看該作者
29#
發(fā)表于 2025-3-26 13:34:25 | 只看該作者
30#
發(fā)表于 2025-3-26 18:04:55 | 只看該作者
,Das Rechnen in endlichen K?rpern,Im Folgenden sei . ∈ ? Primzahl, dann ist . K?rper (1.8). Weiter sei . ∈ .[.] ein normiertes, irreduzibles Polynom vom Grad . > 1. Also ist nach 3.7 (Seite 47) auch . endlicher K?rper mit . Elementen, ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 18:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白银市| 宁阳县| 阜新| 仙桃市| 榆树市| 磴口县| 乌鲁木齐县| 甘谷县| 晋城| 宁乡县| 库伦旗| 镇巴县| 双峰县| 宝坻区| 文昌市| 湖北省| 靖远县| 凤阳县| 饶阳县| 建湖县| 韶山市| 扶沟县| 松潘县| 白水县| 芷江| 临夏县| 洪洞县| 桦川县| 宁都县| 吉水县| 大石桥市| 蒙阴县| 确山县| 黄石市| 廊坊市| 板桥市| 嘉义市| 巫山县| 武夷山市| 丰宁| 九寨沟县|