找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Endliche K?rper; Verstehen, Rechnen, Hans Kurzweil Textbook 20071st edition Springer-Verlag Berlin Heidelberg 2007 Algebra.Algorithmus.Fou

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 05:34:18 | 只看該作者
22#
發(fā)表于 2025-3-25 09:59:47 | 只看該作者
23#
發(fā)表于 2025-3-25 12:02:26 | 只看該作者
Der Ring der ganzen Zahlen,Letztendlich wird die Addition und Multiplikation in endlichen K?rpern auf die Addition und Multiplikation von ganzen Zahlen zurückgeführt. Deswegen müssen wir die an sich selbstverst?ndlichen Rechenoperationen in ? genauer analysieren.
24#
發(fā)表于 2025-3-25 16:01:54 | 只看該作者
Der Polynomring,Im vorigen Kapitel haben wir den endlichen K?rper ?. gebildet, . Primzahl. Die Elemente eines beliebigen endlichen K?rpers k?nnen als Polynome über dem K?rper ?. aufgefasst werden. Um dies zu erkl?ren, bedarf es einer sorgf?ltigen Darstellung des Polynombegriffs.
25#
發(fā)表于 2025-3-25 21:14:03 | 只看該作者
26#
發(fā)表于 2025-3-26 01:59:53 | 只看該作者
27#
發(fā)表于 2025-3-26 04:25:51 | 只看該作者
28#
發(fā)表于 2025-3-26 10:14:24 | 只看該作者
29#
發(fā)表于 2025-3-26 13:34:25 | 只看該作者
30#
發(fā)表于 2025-3-26 18:04:55 | 只看該作者
,Das Rechnen in endlichen K?rpern,Im Folgenden sei . ∈ ? Primzahl, dann ist . K?rper (1.8). Weiter sei . ∈ .[.] ein normiertes, irreduzibles Polynom vom Grad . > 1. Also ist nach 3.7 (Seite 47) auch . endlicher K?rper mit . Elementen, ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 18:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金沙县| 汨罗市| 花垣县| 青州市| 上林县| 高唐县| 娄烦县| 四子王旗| 达孜县| 沈阳市| 平乡县| 德庆县| 隆尧县| 濮阳县| 博湖县| 高雄县| 文成县| 遵义市| 长岭县| 积石山| 柳林县| 凤台县| 醴陵市| 屏南县| 新丰县| 叙永县| 嘉峪关市| 石台县| 黎川县| 建始县| 封丘县| 泰和县| 修水县| 厦门市| 庐江县| 龙岩市| 临江市| 光山县| 山东| 措美县| 浪卡子县|