找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Encyclopedia of Distances; Michel Marie Deza,Elena Deza Book 20143rd edition Springer-Verlag Berlin Heidelberg 2014 distance.metric space.

[復制鏈接]
樓主: 浮標
11#
發(fā)表于 2025-3-23 09:46:12 | 只看該作者
12#
發(fā)表于 2025-3-23 17:54:00 | 只看該作者
https://doi.org/10.1007/978-3-030-14899-7. is a multidimensional generalization of the intrinsic geometry of 2D surfaces in the Euclidean space ..
13#
發(fā)表于 2025-3-23 18:58:55 | 只看該作者
https://doi.org/10.1057/9781137501394A . is a real 2D (two-dimensional) .., i.e., a ., each point of which has a neighborhood which is homeomorphic to a plane ., or a closed half-plane (cf. Chap. .)..A compact orientable surface is called . if it has no boundary, and it is called a ., otherwise.
14#
發(fā)表于 2025-3-23 22:37:23 | 只看該作者
Marco Bertoni,Hakki Eres,Jim ScanlanA . in the .-dimensional Euclidean space . is a convex . subset of ..
15#
發(fā)表于 2025-3-24 06:20:30 | 只看該作者
https://doi.org/10.1007/978-94-017-4456-0A . (., ? , .) is a set . of elements with a binary operation ? , called the ., that together satisfy the four fundamental properties of . (. ? . ∈ . for any ., . ∈ .), . (. ? (. ? .) = (. ? .) ? . for any ., ., . ∈ .), the . (. for any . ∈ .), and the . (for any . ∈ ., there exists an element .. ∈ . such that .
16#
發(fā)表于 2025-3-24 07:59:30 | 只看該作者
17#
發(fā)表于 2025-3-24 12:37:07 | 只看該作者
https://doi.org/10.1007/978-1-4020-8200-9Here we consider the most important metrics on the classical number systems: the semiring . of natural numbers, the ring . of integers, and the fields ., ., . of rational, real, complex numbers, respectively.
18#
發(fā)表于 2025-3-24 17:23:39 | 只看該作者
19#
發(fā)表于 2025-3-24 20:45:33 | 只看該作者
John W. Evans,Jillian Y. Evans DoctorA . is a .., where . is the set of all measurable subsets of ., and . is a measure on . with .. The set . is called a ..
20#
發(fā)表于 2025-3-24 23:38:34 | 只看該作者
,e-Business — electronic business and PLM,A . is a pair . = (., .), where . is a set, called the set of . of the graph ., and . is a set of unordered pairs of vertices, called the . of the graph .. A . (or .) is a pair . = (., .), where . is a set, called the set of . of the digraph ., and . is a set of ordered pairs of vertices, called . of the digraph ..
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 12:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
红安县| 浦城县| 古蔺县| 呼玛县| 乌鲁木齐市| 博乐市| 秭归县| 合山市| 句容市| 玉田县| 香河县| 泰安市| 余干县| 宝鸡市| 万山特区| 临武县| 江山市| 兴文县| 湖口县| 岳阳市| 乌拉特中旗| 三台县| 凌云县| 全南县| 伊金霍洛旗| 张家口市| 龙州县| 铜山县| 鲁山县| 客服| 深水埗区| 武城县| 台江县| 济源市| 怀仁县| 醴陵市| 土默特左旗| 江陵县| 长丰县| 霸州市| 江油市|