找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Encyclopedia of Distances; Michel Marie Deza,Elena Deza Book 20143rd edition Springer-Verlag Berlin Heidelberg 2014 distance.metric space.

[復(fù)制鏈接]
樓主: 浮標(biāo)
11#
發(fā)表于 2025-3-23 09:46:12 | 只看該作者
12#
發(fā)表于 2025-3-23 17:54:00 | 只看該作者
https://doi.org/10.1007/978-3-030-14899-7. is a multidimensional generalization of the intrinsic geometry of 2D surfaces in the Euclidean space ..
13#
發(fā)表于 2025-3-23 18:58:55 | 只看該作者
https://doi.org/10.1057/9781137501394A . is a real 2D (two-dimensional) .., i.e., a ., each point of which has a neighborhood which is homeomorphic to a plane ., or a closed half-plane (cf. Chap. .)..A compact orientable surface is called . if it has no boundary, and it is called a ., otherwise.
14#
發(fā)表于 2025-3-23 22:37:23 | 只看該作者
Marco Bertoni,Hakki Eres,Jim ScanlanA . in the .-dimensional Euclidean space . is a convex . subset of ..
15#
發(fā)表于 2025-3-24 06:20:30 | 只看該作者
https://doi.org/10.1007/978-94-017-4456-0A . (., ? , .) is a set . of elements with a binary operation ? , called the ., that together satisfy the four fundamental properties of . (. ? . ∈ . for any ., . ∈ .), . (. ? (. ? .) = (. ? .) ? . for any ., ., . ∈ .), the . (. for any . ∈ .), and the . (for any . ∈ ., there exists an element .. ∈ . such that .
16#
發(fā)表于 2025-3-24 07:59:30 | 只看該作者
17#
發(fā)表于 2025-3-24 12:37:07 | 只看該作者
https://doi.org/10.1007/978-1-4020-8200-9Here we consider the most important metrics on the classical number systems: the semiring . of natural numbers, the ring . of integers, and the fields ., ., . of rational, real, complex numbers, respectively.
18#
發(fā)表于 2025-3-24 17:23:39 | 只看該作者
19#
發(fā)表于 2025-3-24 20:45:33 | 只看該作者
John W. Evans,Jillian Y. Evans DoctorA . is a .., where . is the set of all measurable subsets of ., and . is a measure on . with .. The set . is called a ..
20#
發(fā)表于 2025-3-24 23:38:34 | 只看該作者
,e-Business — electronic business and PLM,A . is a pair . = (., .), where . is a set, called the set of . of the graph ., and . is a set of unordered pairs of vertices, called the . of the graph .. A . (or .) is a pair . = (., .), where . is a set, called the set of . of the digraph ., and . is a set of ordered pairs of vertices, called . of the digraph ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 21:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜兰市| 观塘区| 丁青县| 扎囊县| 巫山县| 顺平县| 保康县| 贵阳市| 治多县| 格尔木市| 蛟河市| 卢氏县| 马龙县| 礼泉县| 凤冈县| 高平市| 鄂托克旗| 喀喇| 洪雅县| 丰城市| 茶陵县| 宿州市| 五大连池市| 江孜县| 罗山县| 北京市| 田林县| 厦门市| 贵定县| 缙云县| 平乐县| 元朗区| 文化| 台东县| 富源县| 利津县| 平江县| 汶川县| 左权县| 八宿县| 随州市|