找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Enabling Machine Learning Applications in Data Science; Proceedings of Arab Aboul Ella Hassanien,Ashraf Darwish,Dabiah Ahmed A Conference

[復制鏈接]
樓主: 愚蠢地活
11#
發(fā)表于 2025-3-23 22:41:58 | 只看該作者
An Efficient Framework to Build Up Heart Sounds and Murmurs Datasets Used for Automatic Cardiovasculn this paper, we propose a framework for creating and collecting heart sounds and murmurs datasets. In this dataset, we aim to achieve multiple objectives such as of data balancing and data quality, along with a proper logical structure of as many samples of multiple classes of heart diseases and mu
12#
發(fā)表于 2025-3-24 04:48:04 | 只看該作者
Facial Recognition and Emotional Expressions Over Video Conferencing Based on Web Real Time Communiclications and platforms based on WebRTC technology helps in establishing a peer to peer communication and streaming,?transmitting?and?receiving video, audio and data in real-time. In other hand, TensorFlow.js is opensource models in JavaScript which applied the concept of machine learning. Both WebR
13#
發(fā)表于 2025-3-24 07:47:17 | 只看該作者
Recent Advances in Intelligent Imaging Systems for Early Prediction of Colorectal Cancer: A Perspectinical practice. This chapter is an attempt to highlight the importance of intelligent medical imaging systems for decision making and management of the disease. A detailed overview of various insights of CRC is described in this chapter. We have also given a detailed analysis of various intelligent
14#
發(fā)表于 2025-3-24 12:43:20 | 只看該作者
15#
發(fā)表于 2025-3-24 14:50:03 | 只看該作者
Optimum Voltage Sag Compensation Strategies Using DVR Series with the Critical Loads (DVR), where the use of a DVR is the best way to compensate for the voltage near the loads during voltage sag to save the electrical source in the healthy operation. The DVR is designed to be connected in series with a power system to protect the sensitive load from voltage sag or swell. This study
16#
發(fā)表于 2025-3-24 20:12:10 | 只看該作者
Robust Clustering Based Possibilistic Type-2 Fuzzy C-means for Noisy Datasets feature selection and the improved possibilistic clustering, the robustness against uncertain datasets is provided due to the use of Type-2 Fuzzy C-means, in addition, ensemble clustering provides better clustering quality. The comparison of the proposed clustering method with similar clustering al
17#
發(fā)表于 2025-3-25 01:23:09 | 只看該作者
18#
發(fā)表于 2025-3-25 03:24:44 | 只看該作者
19#
發(fā)表于 2025-3-25 09:22:14 | 只看該作者
20#
發(fā)表于 2025-3-25 13:01:36 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-23 20:58
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
云林县| 新化县| 蓝山县| 喜德县| 南乐县| 莱芜市| 涟水县| 林西县| 淮北市| 镇远县| 海伦市| 奉节县| 太原市| 兰考县| 大渡口区| 吴川市| 讷河市| 龙南县| 姜堰市| 华阴市| 易门县| 洛川县| 武鸣县| 安顺市| 军事| 仪陇县| 金川县| 新密市| 客服| 北流市| 新密市| 南川市| 通州区| 永泰县| 西城区| 奉贤区| 安塞县| 广南县| 云龙县| 明水县| 义马市|