找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Empowering Novel Geometric Algebra for Graphics and Engineering; 7th International Wo Eckhard Hitzer,George Papagiannakis,Petr Vasik Confer

[復(fù)制鏈接]
查看: 49413|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:37:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Empowering Novel Geometric Algebra for Graphics and Engineering
副標(biāo)題7th International Wo
編輯Eckhard Hitzer,George Papagiannakis,Petr Vasik
視頻videohttp://file.papertrans.cn/310/309090/309090.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Empowering Novel Geometric Algebra for Graphics and Engineering; 7th International Wo Eckhard Hitzer,George Papagiannakis,Petr Vasik Confer
描述.This book constitutes the proceedings of the Workshop Empowering Novel Geometric Algebra for Graphics and Engineering, ENGAGE 2022, held in conjunction with Computer Graphics International conference, CGI 2022, which took place virtually, in September 2022. .The 10 full papers included in this volume were carefully reviewed and selected from 12 submissions. The workshop focused specifically on important aspects of geometric algebra including algebraic foundations, digitized transformations, orientation, conic fitting, protein modelling, digital twinning, and multidimensional signal processing..
出版日期Conference proceedings 2023
關(guān)鍵詞Computer Science; Informatics; Conference Proceedings; Research; Applications
版次1
doihttps://doi.org/10.1007/978-3-031-30923-6
isbn_softcover978-3-031-30922-9
isbn_ebook978-3-031-30923-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Empowering Novel Geometric Algebra for Graphics and Engineering影響因子(影響力)




書(shū)目名稱(chēng)Empowering Novel Geometric Algebra for Graphics and Engineering影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Empowering Novel Geometric Algebra for Graphics and Engineering網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Empowering Novel Geometric Algebra for Graphics and Engineering網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Empowering Novel Geometric Algebra for Graphics and Engineering被引頻次




書(shū)目名稱(chēng)Empowering Novel Geometric Algebra for Graphics and Engineering被引頻次學(xué)科排名




書(shū)目名稱(chēng)Empowering Novel Geometric Algebra for Graphics and Engineering年度引用




書(shū)目名稱(chēng)Empowering Novel Geometric Algebra for Graphics and Engineering年度引用學(xué)科排名




書(shū)目名稱(chēng)Empowering Novel Geometric Algebra for Graphics and Engineering讀者反饋




書(shū)目名稱(chēng)Empowering Novel Geometric Algebra for Graphics and Engineering讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:41:27 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:46:11 | 只看該作者
地板
發(fā)表于 2025-3-22 06:19:40 | 只看該作者
Drug Interactions and Polypharmacys of GAC is derived; hence, the use of the improper waypoints in the conic fitting problem is enabled. Finally, a MATLAB implementation of the fitting algorithm and experimental results based on custom data sets are included.
5#
發(fā)表于 2025-3-22 10:18:05 | 只看該作者
Shahab Manzari,Yaghoub Fathipour conjectured characterization of 3D bijective digitized reflections and, thus, rotations. So far, any known quaternion that defines a bijective digitized rotation verifies the conjecture. An approximation method of any digitized reflection by a conjectured bijective one is also proposed.
6#
發(fā)表于 2025-3-22 16:20:35 | 只看該作者
Conjecture on?Characterisation of?Bijective 3D Digitized Reflections and?Rotations conjectured characterization of 3D bijective digitized reflections and, thus, rotations. So far, any known quaternion that defines a bijective digitized rotation verifies the conjecture. An approximation method of any digitized reflection by a conjectured bijective one is also proposed.
7#
發(fā)表于 2025-3-22 19:52:48 | 只看該作者
Conference proceedings 2023on with Computer Graphics International conference, CGI 2022, which took place virtually, in September 2022. .The 10 full papers included in this volume were carefully reviewed and selected from 12 submissions. The workshop focused specifically on important aspects of geometric algebra including alg
8#
發(fā)表于 2025-3-22 21:21:34 | 只看該作者
On Noncommutative Vieta Theorem in?Geometric Algebrasieta theorem and use it for the case of geometric algebras of small dimensions. The results can be used in symbolic computation and various applications of geometric algebras in computer science, computer graphics, computer vision, physics, and engineering.
9#
發(fā)表于 2025-3-23 03:15:18 | 只看該作者
Complementary Orientations in?Geometric Algebrasf dualization. We employ the Hodge dual, to include important algebras with null elements like PGA. Oriented elements can be combined using the meet operation, and the dual join (which is here introduced for that purpose). Software written to process one orientation type can be employed to process the complementary type consistently.
10#
發(fā)表于 2025-3-23 07:44:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 16:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石阡县| 灌阳县| 类乌齐县| 沂源县| 十堰市| 屏东市| 临夏市| 印江| 嘉义市| 忻州市| 会昌县| 长兴县| 慈溪市| 张北县| 赤峰市| 清镇市| 万年县| 芮城县| 灵宝市| 嘉祥县| 定西市| 万载县| 西盟| 锡林郭勒盟| 嘉兴市| 内江市| 柳河县| 公安县| 布拖县| 牙克石市| 冕宁县| 尼木县| 长治市| 孝昌县| 长岭县| 定兴县| 柳林县| 漳平市| 西乌珠穆沁旗| 南京市| 定南县|