找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Empirical Inference; Festschrift in Honor Bernhard Sch?lkopf,Zhiyuan Luo,Vladimir Vovk Book 2013 Springer-Verlag Berlin Heidelberg 2013 Bay

[復(fù)制鏈接]
查看: 34897|回復(fù): 57
樓主
發(fā)表于 2025-3-21 19:28:37 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Empirical Inference
副標(biāo)題Festschrift in Honor
編輯Bernhard Sch?lkopf,Zhiyuan Luo,Vladimir Vovk
視頻videohttp://file.papertrans.cn/309/308861/308861.mp4
概述Honours one of the pioneers of machine learning.Contributing authors are among the leading authorities in these domains.Of interest to researchers and engineers in the fields of machine learning, stat
圖書封面Titlebook: Empirical Inference; Festschrift in Honor Bernhard Sch?lkopf,Zhiyuan Luo,Vladimir Vovk Book 2013 Springer-Verlag Berlin Heidelberg 2013 Bay
描述.This book honours the outstanding contributions of Vladimir Vapnik, a rare example of a scientist for whom the following statements hold true simultaneously: his work led to the inception of a new field of research, the theory of statistical learning and empirical inference; he has lived to see the field blossom; and he is still as active as ever. He started analyzing learning algorithms in the 1960s and he invented the first version of the generalized portrait algorithm. He later developed one of the most successful methods in machine learning, the support vector machine (SVM) – more than just an algorithm, this was a new approach to learning problems, pioneering the use of functional analysis and convex optimization in machine learning..?.Part I of this book contains three chapters describing and witnessing some of Vladimir Vapnik‘s contributions to science. In the first chapter, Léon Bottou discusses the seminal paper published in 1968 by Vapnik and Chervonenkis that lay the foundations of statistical learning theory, and the second chapter is an English-language translation of that original paper. In the third chapter, Alexey Chervonenkis presents a first-hand account of the e
出版日期Book 2013
關(guān)鍵詞Bayesian theory; Kernels; Learning; Machine learning; Optimization; Statistical learning theory; Support v
版次1
doihttps://doi.org/10.1007/978-3-642-41136-6
isbn_softcover978-3-662-52511-1
isbn_ebook978-3-642-41136-6
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書目名稱Empirical Inference影響因子(影響力)




書目名稱Empirical Inference影響因子(影響力)學(xué)科排名




書目名稱Empirical Inference網(wǎng)絡(luò)公開度




書目名稱Empirical Inference網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Empirical Inference被引頻次




書目名稱Empirical Inference被引頻次學(xué)科排名




書目名稱Empirical Inference年度引用




書目名稱Empirical Inference年度引用學(xué)科排名




書目名稱Empirical Inference讀者反饋




書目名稱Empirical Inference讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:26:47 | 只看該作者
Sonnenbad, Schlaf und Rhythmus,te of Control Sciences of the Russian Academy of Sciences, Moscow, Russia) in the framework of the “Generalised Portrait Method” for computer learning and pattern recognition. The development of these ideas started in 1962 and they were first published in 1964.
板凳
發(fā)表于 2025-3-22 00:58:20 | 只看該作者
地板
發(fā)表于 2025-3-22 05:29:06 | 只看該作者
https://doi.org/10.1007/978-3-662-58719-5k and inaccurate rules. The AdaBoost algorithm of Freund and Schapire was the first practical boosting algorithm, and remains one of the most widely used and studied, with applications in numerous fields. This chapter aims to review some of the many perspectives and analyses of AdaBoost that have be
5#
發(fā)表于 2025-3-22 10:52:47 | 只看該作者
6#
發(fā)表于 2025-3-22 13:34:35 | 只看該作者
Birgit Piechulla,Hans Walter Heldting and in the general learningGeneral learning setting introduced by Vladimir Vapnik. We survey classic results characterizing learnability in terms of suitable notions of complexity, as well as more recent results that establish the connection between learnability and stability of a learning algor
7#
發(fā)表于 2025-3-22 19:02:18 | 只看該作者
8#
發(fā)表于 2025-3-22 22:42:32 | 只看該作者
A. Ullrich,B. Münzenberger,R. F. Hüttl We review some of the most well-known methods and discuss their advantages and disadvantages. Particular emphasis is put on methods that scale well at training and testing time so that they can be used in real-life systems; we discuss their application on large-scale image and text classification t
9#
發(fā)表于 2025-3-23 01:56:49 | 只看該作者
Friedemann Klenke,Markus Schollere method is identical to a formula in Bayesian statistics, but Kernel Ridge Regression has performance guarantees that have nothing to do with Bayesian assumptions. I will discuss two kinds of such performance guarantees: those not requiring any assumptions whatsoever, and those depending on the ass
10#
發(fā)表于 2025-3-23 08:56:05 | 只看該作者
Das Blatt als photosynthetisches System,. We discuss the foundations as well as some of the recent advances of the field, including strategies for learning or refining the measure of task relatedness. We present an example from the application domain of Computational Biology, where multi-task learning has been successfully applied, and gi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 15:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
榆树市| 隆昌县| 正安县| 宝坻区| 公主岭市| 新竹县| 涞源县| 墨江| 祥云县| SHOW| 车致| 陕西省| 天津市| 锡林郭勒盟| 嘉兴市| 抚松县| 泾源县| 青铜峡市| 武鸣县| 嘉鱼县| 德格县| 弋阳县| 顺平县| 临沂市| 邢台市| 砚山县| 五莲县| 定西市| 宁波市| 黔江区| 常熟市| 文昌市| 盈江县| 威宁| 调兵山市| 平度市| 方城县| 抚州市| 临湘市| 巴南区| 梁山县|