找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Empirical Approach to Machine Learning; Plamen P. Angelov,Xiaowei Gu Book 2019 Springer Nature Switzerland AG 2019 Empirical Data Analytic

[復(fù)制鏈接]
樓主: satisficer
21#
發(fā)表于 2025-3-25 03:57:35 | 只看該作者
On Model-Based Software Developmentes based on both the synthetic and benchmark datasets are presented for evaluating the performance of the AAD algorithm. Well-known traditional anomaly detection approaches are used for a further comparison. It was demonstrated through the numerical experiments that the AAD algorithm is able to prov
22#
發(fā)表于 2025-3-25 10:05:06 | 只看該作者
https://doi.org/10.1007/978-3-030-57054-5ibed in chapter 7 are provided. Numerical examples based on well-known benchmark datasets are presented for evaluating the performance of the ADP algorithm on data partitioning. Furthermore, numerical examples on semi-supervised classification are also conducted as a potential application of the ADP
23#
發(fā)表于 2025-3-25 12:13:08 | 只看該作者
Patchwork-Spotlight: Lernkultur, are provided. Numerical examples based on well-known benchmark datasets are presented for evaluating the classification performance of the .-. and .-. systems. Real-world problems are also used for evaluating the performance of the .-. system on regression. Numerical experiments and the comparison
24#
發(fā)表于 2025-3-25 16:13:15 | 只看該作者
Wolfgang Miltner,Wolfgang Larbigles based on popular benchmark image sets including, handwritten digits recognition, remote sensing scene classification, face recognition and object recognition, etc., are presented for evaluating the performance of the DRB algorithm on image classification, and the state-of-the-art approaches are
25#
發(fā)表于 2025-3-25 21:33:34 | 只看該作者
26#
發(fā)表于 2025-3-26 00:20:33 | 只看該作者
27#
發(fā)表于 2025-3-26 04:17:36 | 只看該作者
Empirical Approach to Machine Learning978-3-030-02384-3Series ISSN 1860-949X Series E-ISSN 1860-9503
28#
發(fā)表于 2025-3-26 09:55:36 | 只看該作者
Plamen P. Angelov,Xiaowei GuNew efficient methods for pattern recognition and machine learning in data-rich environments.Focuses on automated methods, which can be easily adapted to various applications.Covers techniques with hi
29#
發(fā)表于 2025-3-26 12:56:51 | 只看該作者
Studies in Computational Intelligencehttp://image.papertrans.cn/e/image/308847.jpg
30#
發(fā)表于 2025-3-26 17:04:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 13:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和平县| 阳曲县| 区。| 且末县| 平乐县| 柳林县| 榕江县| 崇明县| 麻栗坡县| 务川| 英吉沙县| 崇文区| 赤城县| 东乡县| 云和县| 保定市| 曲阳县| 扶沟县| 同江市| 庄浪县| 宝丰县| 饶阳县| 淮南市| 泸州市| 乌拉特后旗| 富民县| 龙泉市| 原阳县| 越西县| 山东| 洪江市| 灯塔市| 施秉县| 丰宁| 昌邑市| 吉隆县| 布拖县| 大方县| 自贡市| 青铜峡市| 玉屏|