找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Empirical Approach to Machine Learning; Plamen P. Angelov,Xiaowei Gu Book 2019 Springer Nature Switzerland AG 2019 Empirical Data Analytic

[復制鏈接]
查看: 28684|回復: 60
樓主
發(fā)表于 2025-3-21 18:12:25 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Empirical Approach to Machine Learning
編輯Plamen P. Angelov,Xiaowei Gu
視頻videohttp://file.papertrans.cn/309/308847/308847.mp4
概述New efficient methods for pattern recognition and machine learning in data-rich environments.Focuses on automated methods, which can be easily adapted to various applications.Covers techniques with hi
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Empirical Approach to Machine Learning;  Plamen P. Angelov,Xiaowei Gu Book 2019 Springer Nature Switzerland AG 2019 Empirical Data Analytic
描述This book provides a ‘one-stop source’ for all readers who are interested in a new, empirical approach to machine learning that, unlike traditional methods, successfully addresses the demands of today’s data-driven world. After an introduction to the fundamentals, the book discusses in depth anomaly detection, data partitioning and clustering, as well as classification and predictors. It describes classifiers of zero and first order, and the new, highly efficient and transparent deep rule-based classifiers, particularly highlighting their applications to image processing. Local optimality and stability conditions for the methods presented are formally derived and stated, while the software is also provided as supplemental, open-source material. The book will greatly benefit postgraduate students, researchers and practitioners dealing with advanced data processing, applied mathematicians, software developers of agent-oriented systems, and developers of embedded and real-time systems. Itcan also be used as a textbook for postgraduate coursework; for this purpose, a standalone set of lecture notes and corresponding lab session notes are available on the same website as the code..Dimit
出版日期Book 2019
關(guān)鍵詞Empirical Data Analytics; Data-centered Approaches; Deep Learning Applications; Fuzzy Rule-based Classi
版次1
doihttps://doi.org/10.1007/978-3-030-02384-3
isbn_softcover978-3-030-13209-5
isbn_ebook978-3-030-02384-3Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Empirical Approach to Machine Learning影響因子(影響力)




書目名稱Empirical Approach to Machine Learning影響因子(影響力)學科排名




書目名稱Empirical Approach to Machine Learning網(wǎng)絡(luò)公開度




書目名稱Empirical Approach to Machine Learning網(wǎng)絡(luò)公開度學科排名




書目名稱Empirical Approach to Machine Learning被引頻次




書目名稱Empirical Approach to Machine Learning被引頻次學科排名




書目名稱Empirical Approach to Machine Learning年度引用




書目名稱Empirical Approach to Machine Learning年度引用學科排名




書目名稱Empirical Approach to Machine Learning讀者反饋




書目名稱Empirical Approach to Machine Learning讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:03:48 | 只看該作者
Brief Introduction to Statistical Machine Learningon, regression and prediction approaches of various types. In the end, the topic of image processing is also briefly covered including the popular image transformation techniques, and a number of image feature extraction techniques at three different levels.
板凳
發(fā)表于 2025-3-22 03:18:13 | 只看該作者
Data Partitioning—, Approacho end up with a locally optimal structure of . represented by their focal points/prototypes, which is then ready to be used for analysis, building a multi-model classifier, predictor, controller or for fault isolation.
地板
發(fā)表于 2025-3-22 04:36:43 | 只看該作者
5#
發(fā)表于 2025-3-22 11:29:40 | 只看該作者
Applications of Autonomous Learning Multi-model Systemsworld applications. The pseudo-code of the main procedure of the .-. system and the MATLAB implementation are provided in appendices B.3 and C.3, and the corresponding pseudo-code and MATLAB implementation of .-. systems are provided in appendices B.4 and C.4, respectively.
6#
發(fā)表于 2025-3-22 13:48:51 | 只看該作者
7#
發(fā)表于 2025-3-22 19:55:11 | 只看該作者
Perspectives on a Dynamic Eartho end up with a locally optimal structure of . represented by their focal points/prototypes, which is then ready to be used for analysis, building a multi-model classifier, predictor, controller or for fault isolation.
8#
發(fā)表于 2025-3-23 01:15:01 | 只看該作者
Gautam Sengupta,Shruti Sircar,Rahul Balusuility of semi-supervised learning further allows the DRB classifier to learn new classes actively without human experts’ involvement. Thanks to the prototype-based nature of the DRB classifier, it is free from . assumptions about the type of the data distribution, their random or deterministic natur
9#
發(fā)表于 2025-3-23 05:09:14 | 只看該作者
10#
發(fā)表于 2025-3-23 05:51:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
阜城县| 兴仁县| 五寨县| 元朗区| 靖边县| 泰宁县| 云林县| 上栗县| 泰州市| 五指山市| 中西区| 交城县| 佳木斯市| 即墨市| 淳安县| 五台县| 文化| 平谷区| 宽甸| 申扎县| 灵丘县| 镇原县| 南木林县| 谢通门县| 察雅县| 崇州市| 内乡县| 赤水市| 锦州市| 娄底市| 沁水县| 吐鲁番市| 铁岭县| 临邑县| 兰考县| 岗巴县| 龙陵县| 寻甸| 兴仁县| 泽普县| 邮箱|