找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Empirical Agent-Based Modelling - Challenges and Solutions; Volume 1, The Charac Alexander Smajgl,Olivier Barreteau Book 2014 Springer Scie

[復(fù)制鏈接]
樓主: 葉子
21#
發(fā)表于 2025-3-25 04:03:05 | 只看該作者
Using Spatially Explicit Marketing Data to Build Social Simulations,they rely on detailed data on cognitive and behavioural variables e.g. gathered through a domain-specific survey to craftspecific behavioural agent rules.However, both scales cannot easilybe connected. This chapter describes a method of using data stemming from geo-marketing research to support this
22#
發(fā)表于 2025-3-25 09:16:12 | 只看該作者
23#
發(fā)表于 2025-3-25 12:21:24 | 只看該作者
24#
發(fā)表于 2025-3-25 16:05:52 | 只看該作者
Parameterisation of Individual Working Dynamics, areas experience a rebirth, even in areas where until recently development was not considered possible. Our modelling effort aims at better understanding these heterogeneities. To deal with this objective, the modelling and the parameterisation should be strongly constraint by available data. This
25#
發(fā)表于 2025-3-25 20:27:06 | 只看該作者
How to Characterise and Parameterise Agents in Electricity Market Simulation Models: The Case of Gees in a competitive electricity market. It focuses on adaptive behaviour of generation and investment companies in Australia’s National Electricity Market (NEM) as modelled by Genersys. Through initiatives such as formal focus group meetings, gathering observations of industry experts, analysing mar
26#
發(fā)表于 2025-3-26 04:07:16 | 只看該作者
27#
發(fā)表于 2025-3-26 06:11:11 | 只看該作者
28#
發(fā)表于 2025-3-26 10:02:53 | 只看該作者
Building Empirical Multiagent Models from First Principles When Fieldwork Is Difficult or Impossiblimpossible to conduct and data is primarily of qualitative nature. Empirical multiagent models have become ever more popular over the last decade. While informing models using statistical and geospatial data can orient itself on more established techniques and standards, methodological challenges pe
29#
發(fā)表于 2025-3-26 14:34:38 | 只看該作者
30#
發(fā)表于 2025-3-26 16:58:41 | 只看該作者
978-1-4939-5252-6Springer Science+Business Media New York 2014
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中超| 林西县| 莱阳市| 翼城县| 呼伦贝尔市| 休宁县| 鲁甸县| 洮南市| 永宁县| 南投市| 蓬莱市| 昌都县| 怀集县| 合作市| 姜堰市| 武定县| 穆棱市| 东兴市| 景泰县| 宾阳县| 柏乡县| 连江县| 松潘县| 达尔| 烟台市| 浠水县| 岳池县| 西青区| 金华市| 柳州市| 邓州市| 丰都县| 镇坪县| 黔南| 阿拉善左旗| 柏乡县| 平顺县| 神农架林区| 偏关县| 竹山县| 廉江市|