找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Empirical Agent-Based Modelling - Challenges and Solutions; Volume 1, The Charac Alexander Smajgl,Olivier Barreteau Book 2014 Springer Scie

[復(fù)制鏈接]
樓主: 葉子
21#
發(fā)表于 2025-3-25 04:03:05 | 只看該作者
Using Spatially Explicit Marketing Data to Build Social Simulations,they rely on detailed data on cognitive and behavioural variables e.g. gathered through a domain-specific survey to craftspecific behavioural agent rules.However, both scales cannot easilybe connected. This chapter describes a method of using data stemming from geo-marketing research to support this
22#
發(fā)表于 2025-3-25 09:16:12 | 只看該作者
23#
發(fā)表于 2025-3-25 12:21:24 | 只看該作者
24#
發(fā)表于 2025-3-25 16:05:52 | 只看該作者
Parameterisation of Individual Working Dynamics, areas experience a rebirth, even in areas where until recently development was not considered possible. Our modelling effort aims at better understanding these heterogeneities. To deal with this objective, the modelling and the parameterisation should be strongly constraint by available data. This
25#
發(fā)表于 2025-3-25 20:27:06 | 只看該作者
How to Characterise and Parameterise Agents in Electricity Market Simulation Models: The Case of Gees in a competitive electricity market. It focuses on adaptive behaviour of generation and investment companies in Australia’s National Electricity Market (NEM) as modelled by Genersys. Through initiatives such as formal focus group meetings, gathering observations of industry experts, analysing mar
26#
發(fā)表于 2025-3-26 04:07:16 | 只看該作者
27#
發(fā)表于 2025-3-26 06:11:11 | 只看該作者
28#
發(fā)表于 2025-3-26 10:02:53 | 只看該作者
Building Empirical Multiagent Models from First Principles When Fieldwork Is Difficult or Impossiblimpossible to conduct and data is primarily of qualitative nature. Empirical multiagent models have become ever more popular over the last decade. While informing models using statistical and geospatial data can orient itself on more established techniques and standards, methodological challenges pe
29#
發(fā)表于 2025-3-26 14:34:38 | 只看該作者
30#
發(fā)表于 2025-3-26 16:58:41 | 只看該作者
978-1-4939-5252-6Springer Science+Business Media New York 2014
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
集安市| 安溪县| 双城市| 章丘市| 大庆市| 银川市| 望谟县| 普定县| 永昌县| 阳东县| 汝城县| 新邵县| 大洼县| 唐山市| 英吉沙县| 安多县| 浦北县| 如东县| 上虞市| 广西| 绵阳市| 淮滨县| 乌拉特前旗| 梓潼县| 尼勒克县| 望城县| 香港| 固安县| 泗水县| 萨迦县| 高台县| 乐安县| 南江县| 苏尼特右旗| 横峰县| 奉新县| 漳平市| 尖扎县| 哈密市| 甘德县| 宁陕县|