找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Emerging Technologies in Computing; Third EAI Internatio Mahdi H. Miraz,Peter S. Excell,Maaruf Ali Conference proceedings 2020 ICST Institu

[復(fù)制鏈接]
樓主: monster
31#
發(fā)表于 2025-3-26 22:56:34 | 只看該作者
A Review of Underwater Acoustic, Electromagnetic and Optical Communicationsns, for example between Scuba divers and the ship, optical frequencies are feasible. For long distance undersea communications, very low electromagnetic frequencies are still the most established way to maintain contact, whilst the vessel remain submerged.
32#
發(fā)表于 2025-3-27 03:20:40 | 只看該作者
https://doi.org/10.1007/978-1-4020-5018-3.12% accuracy for 1D CNN and LSTM, respectively. In addition, it has been observed that dimension reduction techniques have no positive impact on 1D-CNN and LSTM. Without any dimension reduction technique, MFCC with 1D-CNN has demonstrated better accuracy compared to MFCC with LSTM by showing 97.26% and 93.83% of accuracy, respectively.
33#
發(fā)表于 2025-3-27 08:01:04 | 只看該作者
34#
發(fā)表于 2025-3-27 12:12:21 | 只看該作者
35#
發(fā)表于 2025-3-27 15:20:00 | 只看該作者
Bangla Speech Recognition Using 1D-CNN and LSTM with Different Dimension Reduction Techniques.12% accuracy for 1D CNN and LSTM, respectively. In addition, it has been observed that dimension reduction techniques have no positive impact on 1D-CNN and LSTM. Without any dimension reduction technique, MFCC with 1D-CNN has demonstrated better accuracy compared to MFCC with LSTM by showing 97.26% and 93.83% of accuracy, respectively.
36#
發(fā)表于 2025-3-27 19:25:56 | 只看該作者
Comparative Analysis of Dimension Reduction Techniques Over Classification Algorithms for Speech Emo dimension reduction techniques namely Recursive Feature Elimination, Principal Component Analysis and P-value Calculation had been applied to the dataset. Then classifier algorithms were used for accuracy again. Later this study showed that a progress in terms of accuracy (63.12%) had resulted from Gradient Boosting.
37#
發(fā)表于 2025-3-28 01:50:56 | 只看該作者
Investigations on Performances of Pre-trained U-Net Models for 2D Ultrasound Kidney Image Segmentatifor segmentation of kidneys from 2D ultrasound images. Experimentation results obtained shows that U-Net model with VGG-16 backbone outperformed with a promising accuracy of 0.89, thus demonstrating that segmentation can be done even with limited count of images within the dataset.
38#
發(fā)表于 2025-3-28 05:10:06 | 只看該作者
39#
發(fā)表于 2025-3-28 08:37:35 | 只看該作者
978-3-030-60035-8ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020
40#
發(fā)表于 2025-3-28 11:35:44 | 只看該作者
Emerging Technologies in Computing978-3-030-60036-5Series ISSN 1867-8211 Series E-ISSN 1867-822X
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彭山县| 都匀市| 新野县| 长宁县| 屏南县| 汨罗市| 宁城县| 洛扎县| 勃利县| 丰顺县| 读书| 壤塘县| 维西| 伊金霍洛旗| 辉县市| 宕昌县| 崇明县| 衡阳市| 子长县| 辽源市| 焦作市| 大竹县| 六枝特区| 精河县| 台中市| 宜兰市| 正宁县| 乃东县| 苍溪县| 剑河县| 葵青区| 曲靖市| 洪泽县| 定州市| 曲麻莱县| 岚皋县| 寿光市| 屯留县| 腾冲县| 衡水市| 右玉县|