找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Emerging Intelligent Computing Technology and Applications; 9th International Co De-Shuang Huang,Phalguni Gupta,Michael Gromiha Conference

[復制鏈接]
樓主: 中間時期
41#
發(fā)表于 2025-3-28 15:45:21 | 只看該作者
A Novel Feature Selection Technique for SAGE Data Classificationing technique used for measuring the expression levels of genes. Each SAGE library contains expression levels of thousands of genes (or features). It is impossible to consider all these features for classification and also the general feature selection algorithms are not efficient with this data. In
42#
發(fā)表于 2025-3-28 20:56:17 | 只看該作者
43#
發(fā)表于 2025-3-28 23:19:41 | 只看該作者
44#
發(fā)表于 2025-3-29 05:37:58 | 只看該作者
Automated Model Selection and Parameter Estimation of Log-Normal Mixtures via BYY Harmony Learninges, model selection can be made automatically during parameter learning. In this paper, this automated model selection learning mechanism is extended to logarithmic normal (log-normal) mixtures. Actually, an adaptive gradient BYY harmony learning algorithm is proposed for log-normal mixtures. It is
45#
發(fā)表于 2025-3-29 07:48:20 | 只看該作者
A Simple but Robust Complex Disease Classification Method Using Virtual Sample Templatege-scale biological data analysis and mining. In this work we propose a simple classification method based on virtual sample template (VST) and three distance measurements. Each VST corresponds to a subclass in training set. The label of a test sample is simply determined by measuring the similarity
46#
發(fā)表于 2025-3-29 14:31:15 | 只看該作者
Biweight Midcorrelation-Based Gene Differential Coexpression Analysis and Its Application to Type IIing Pearson correlation. However, Pearson correlation is sensitive to outliers. Biweight midcorrelation is considered to be a good alternative to Pearson correlation since it is more robust to outliers. In this paper, we introduce to use Biweight Midcorrelation to measure ‘similarity’ between gene e
47#
發(fā)表于 2025-3-29 18:09:12 | 只看該作者
A Hybrid Gene Selection and Classification Approach for Microarray Data Based on Clustering and PSOmicroarray data. In this approach, PSO combining with clustering method are used to perform gene selection to reduce redundancy. Firstly, genes are partitioned into a certain number of clusters by using K-means, and then PSO is used to perform gene selection from the clustered genes. Because of its
48#
發(fā)表于 2025-3-29 20:42:31 | 只看該作者
Manifold Learner Ensembleccessfully extract intrinsic geometry underlying high-dimensional data cloud. However, there is no work considering the ensemble of local and global manifold learners to promote learning results, where such strategy has achieved great success in classification. In this paper, we propose a manifold l
49#
發(fā)表于 2025-3-30 00:09:09 | 只看該作者
50#
發(fā)表于 2025-3-30 06:10:16 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-22 07:27
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
瓮安县| 井研县| 衡南县| 宣武区| 策勒县| 神农架林区| 黑山县| 钦州市| 黑水县| 九寨沟县| 贡山| 扶风县| 张家川| 浏阳市| 海淀区| 兴山县| 武乡县| 綦江县| 兴城市| 长武县| 台湾省| 海阳市| 连云港市| 莎车县| 苍梧县| 辽阳市| 芜湖市| 乐业县| 商南县| 喀喇沁旗| 荆州市| 新源县| 鸡泽县| 山东省| 遂平县| 都昌县| 大安市| 桓仁| 天峨县| 仁化县| 蓬莱市|