找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Emergent Problems in Nonlinear Systems and Control; Bijoy K. Ghosh,Clyde F. Martin,Yishao Zhou Book 2009 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: ARSON
21#
發(fā)表于 2025-3-25 06:16:02 | 只看該作者
22#
發(fā)表于 2025-3-25 07:52:47 | 只看該作者
https://doi.org/10.1007/978-3-031-64094-0wn classification of transitive Lie group actions on Grassmann manifolds, we derive necessary and sufficient conditions for accessibility of Riccati equations. This also leads to new sufficient Lie-algebraic conditions for controllability of generalized double bracket flows. Observability of Riccati
23#
發(fā)表于 2025-3-25 15:37:14 | 只看該作者
24#
發(fā)表于 2025-3-25 18:32:03 | 只看該作者
25#
發(fā)表于 2025-3-25 20:09:46 | 只看該作者
26#
發(fā)表于 2025-3-26 00:46:49 | 只看該作者
27#
發(fā)表于 2025-3-26 04:35:21 | 只看該作者
https://doi.org/10.1007/978-1-349-13763-3stabilizable. Previously, it was shown that under certain restrictive conditions, global stabilization of such nonlinear systems was achievable by nonsmooth output feedback. The main contribution of this paper is to prove that in the context of semi-global control, most of the restrictive growth con
28#
發(fā)表于 2025-3-26 10:23:57 | 只看該作者
https://doi.org/10.1007/978-1-4302-0988-1The purpose of this paper is to solve two simplified optimal traction control problems, the drag racer problem and the hot-rodder problem. The control problems are defined and the optimal solutions are given. The solution to each problem is not bang-bang, but includes a singular control.
29#
發(fā)表于 2025-3-26 15:10:03 | 只看該作者
30#
發(fā)表于 2025-3-26 20:35:39 | 只看該作者
A Precise Formulation and Solution of the Drag Racer and Hot Rodder Problems,The purpose of this paper is to solve two simplified optimal traction control problems, the drag racer problem and the hot-rodder problem. The control problems are defined and the optimal solutions are given. The solution to each problem is not bang-bang, but includes a singular control.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
库伦旗| 慈溪市| 横山县| 呼和浩特市| 胶南市| 辽阳县| 商洛市| 怀仁县| 琼海市| 定日县| 依安县| 剑河县| 镇巴县| 静乐县| 闸北区| 商城县| 获嘉县| 孟州市| 虹口区| 景谷| 隆德县| 凯里市| 南昌市| 龙岩市| 连城县| 台东市| 桂阳县| 郑州市| 侯马市| 桂平市| 泉州市| 满洲里市| 巍山| 通化县| 威海市| 泊头市| 通江县| 星座| 鹿邑县| 伊川县| 郯城县|