找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Emergent Problems in Nonlinear Systems and Control; Bijoy K. Ghosh,Clyde F. Martin,Yishao Zhou Book 2009 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: ARSON
21#
發(fā)表于 2025-3-25 06:16:02 | 只看該作者
22#
發(fā)表于 2025-3-25 07:52:47 | 只看該作者
https://doi.org/10.1007/978-3-031-64094-0wn classification of transitive Lie group actions on Grassmann manifolds, we derive necessary and sufficient conditions for accessibility of Riccati equations. This also leads to new sufficient Lie-algebraic conditions for controllability of generalized double bracket flows. Observability of Riccati
23#
發(fā)表于 2025-3-25 15:37:14 | 只看該作者
24#
發(fā)表于 2025-3-25 18:32:03 | 只看該作者
25#
發(fā)表于 2025-3-25 20:09:46 | 只看該作者
26#
發(fā)表于 2025-3-26 00:46:49 | 只看該作者
27#
發(fā)表于 2025-3-26 04:35:21 | 只看該作者
https://doi.org/10.1007/978-1-349-13763-3stabilizable. Previously, it was shown that under certain restrictive conditions, global stabilization of such nonlinear systems was achievable by nonsmooth output feedback. The main contribution of this paper is to prove that in the context of semi-global control, most of the restrictive growth con
28#
發(fā)表于 2025-3-26 10:23:57 | 只看該作者
https://doi.org/10.1007/978-1-4302-0988-1The purpose of this paper is to solve two simplified optimal traction control problems, the drag racer problem and the hot-rodder problem. The control problems are defined and the optimal solutions are given. The solution to each problem is not bang-bang, but includes a singular control.
29#
發(fā)表于 2025-3-26 15:10:03 | 只看該作者
30#
發(fā)表于 2025-3-26 20:35:39 | 只看該作者
A Precise Formulation and Solution of the Drag Racer and Hot Rodder Problems,The purpose of this paper is to solve two simplified optimal traction control problems, the drag racer problem and the hot-rodder problem. The control problems are defined and the optimal solutions are given. The solution to each problem is not bang-bang, but includes a singular control.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
钦州市| 册亨县| 淳安县| 和平区| 营口市| 青河县| 广水市| 永清县| 常德市| 唐山市| 岳西县| 合江县| 南充市| 犍为县| 开封市| 洪泽县| 农安县| 汨罗市| 虹口区| 凌海市| 富民县| 兴国县| 克东县| 民丰县| 新龙县| 惠安县| 昌江| 彭山县| 武强县| 兴业县| 嵊泗县| 平陆县| 永嘉县| 鹰潭市| 蓝山县| 扎囊县| 西乡县| 安乡县| 邹城市| 鲁甸县| 措美县|