找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Embeddings in Natural Language Processing; Theory and Advances Mohammad Taher Pilehvar,Jose Camacho-Collados Book 2021 Springer Nature Swi

[復(fù)制鏈接]
查看: 22101|回復(fù): 41
樓主
發(fā)表于 2025-3-21 18:37:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Embeddings in Natural Language Processing
副標(biāo)題Theory and Advances
編輯Mohammad Taher Pilehvar,Jose Camacho-Collados
視頻videohttp://file.papertrans.cn/308/307987/307987.mp4
叢書(shū)名稱(chēng)Synthesis Lectures on Human Language Technologies
圖書(shū)封面Titlebook: Embeddings in Natural Language Processing; Theory and Advances  Mohammad Taher Pilehvar,Jose Camacho-Collados Book 2021 Springer Nature Swi
描述Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents. This book provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. The book also provides an overview of recent developments in contextualized representations (e.g., ELMo and BERT) and explains their potential in NLP. Throughout the book, the reader can find both essential information for understanding a certain topic from scratch and a broad overview of the most successful techniques developed in the literature.
出版日期Book 2021
版次1
doihttps://doi.org/10.1007/978-3-031-02177-0
isbn_softcover978-3-031-01049-1
isbn_ebook978-3-031-02177-0Series ISSN 1947-4040 Series E-ISSN 1947-4059
issn_series 1947-4040
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書(shū)目名稱(chēng)Embeddings in Natural Language Processing影響因子(影響力)




書(shū)目名稱(chēng)Embeddings in Natural Language Processing影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Embeddings in Natural Language Processing網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Embeddings in Natural Language Processing網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Embeddings in Natural Language Processing被引頻次




書(shū)目名稱(chēng)Embeddings in Natural Language Processing被引頻次學(xué)科排名




書(shū)目名稱(chēng)Embeddings in Natural Language Processing年度引用




書(shū)目名稱(chēng)Embeddings in Natural Language Processing年度引用學(xué)科排名




書(shū)目名稱(chēng)Embeddings in Natural Language Processing讀者反饋




書(shū)目名稱(chēng)Embeddings in Natural Language Processing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:34:21 | 只看該作者
Graph Embeddings,ing them can play a central role in various real-world scenarios, such as drug design, friendship recommendation in social networks, semantic modeling in language, and communication pattern extraction.
板凳
發(fā)表于 2025-3-22 01:22:21 | 只看該作者
地板
發(fā)表于 2025-3-22 08:06:20 | 只看該作者
Hui Lu,Zheng Li,Mengqi Li,Deqiang Duanmuge of reasons, for instance to communicate with others, to express thoughts, feelings, and ideas, to ask questions, or to give instructions. Therefore, it is crucial for computers to possess the ability to use the same tool in order to effectively interact with humans.
5#
發(fā)表于 2025-3-22 11:21:36 | 只看該作者
Introduction,ge of reasons, for instance to communicate with others, to express thoughts, feelings, and ideas, to ask questions, or to give instructions. Therefore, it is crucial for computers to possess the ability to use the same tool in order to effectively interact with humans.
6#
發(fā)表于 2025-3-22 16:37:30 | 只看該作者
Book 2021nsional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, t
7#
發(fā)表于 2025-3-22 18:29:20 | 只看該作者
Hideharu Anazawa,Sakayu Shimizuur various historic biases: “morally neutral as toward insects or flowers, problematic as toward race or gender, or even simply veridical, reflecting the status quo distribution of gender with respect to careers or first names”.
8#
發(fā)表于 2025-3-23 00:54:47 | 只看該作者
9#
發(fā)表于 2025-3-23 01:58:00 | 只看該作者
10#
發(fā)表于 2025-3-23 07:22:18 | 只看該作者
https://doi.org/10.1007/978-90-481-9769-9cted. In other words, the following question remained unanswered: how can we place hundreds of thousands of words in a space such that their positioning corresponds to their semantic properties? In this chapter, we will talk about the foundations behind constructing semantic spaces, particularly for words.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 12:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥中县| 富民县| 桂平市| 岐山县| 合水县| 兴宁市| 静乐县| 得荣县| 泰兴市| 辽阳县| 嵊州市| 兴文县| 佛坪县| 沧州市| 秦皇岛市| 赤壁市| 枣阳市| 永新县| 罗定市| 昌邑市| 德化县| 扶绥县| 惠水县| 茂名市| 九江市| 沾化县| 怀远县| 客服| 西畴县| 普安县| 盖州市| 富顺县| 定陶县| 西藏| 固始县| 纳雍县| 天祝| 阜阳市| 合川市| 长子县| 阳信县|