找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Embeddings and Extensions in Analysis; J. H. Wells,L. R. Williams Book 1975 Springer-Verlag Berlin Heidelberg 1975 Analysis.Einbettung.Erw

[復(fù)制鏈接]
查看: 6763|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:26:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Embeddings and Extensions in Analysis
編輯J. H. Wells,L. R. Williams
視頻videohttp://file.papertrans.cn/308/307986/307986.mp4
叢書(shū)名稱Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge
圖書(shū)封面Titlebook: Embeddings and Extensions in Analysis;  J. H. Wells,L. R. Williams Book 1975 Springer-Verlag Berlin Heidelberg 1975 Analysis.Einbettung.Erw
描述The object of this book is a presentation of the major results relating to two geometrically inspired problems in analysis. One is that of determining which metric spaces can be isometrically embedded in a Hilbert space or, more generally, P in an L space; the other asks for conditions on a pair of metric spaces which will ensure that every contraction or every Lipschitz-Holder map from a subset of X into Y is extendable to a map of the same type from X into Y. The initial work on isometric embedding was begun by K. Menger [1928] with his metric investigations of Euclidean geometries and continued, in its analytical formulation, by I. J. Schoenberg [1935] in a series of papers of classical elegance. The problem of extending Lipschitz-Holder and contraction maps was first treated by E. J. McShane and M. D. Kirszbraun [1934]. Following a period of relative inactivity, attention was again drawn to these two problems by G. Minty‘s work on non-linear monotone operators in Hilbert space [1962]; by S. Schonbeck‘s fundamental work in characterizing those pairs (X,Y) of Banach spaces for which extension of contractions is always possible [1966]; and by the generalization of many of Schoenbe
出版日期Book 1975
關(guān)鍵詞Analysis; Einbettung; Erweiterung; Extensions; Hilbert space; Mint; banach spaces; boundary element method;
版次1
doihttps://doi.org/10.1007/978-3-642-66037-5
isbn_softcover978-3-642-66039-9
isbn_ebook978-3-642-66037-5
copyrightSpringer-Verlag Berlin Heidelberg 1975
The information of publication is updating

書(shū)目名稱Embeddings and Extensions in Analysis影響因子(影響力)




書(shū)目名稱Embeddings and Extensions in Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱Embeddings and Extensions in Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Embeddings and Extensions in Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Embeddings and Extensions in Analysis被引頻次




書(shū)目名稱Embeddings and Extensions in Analysis被引頻次學(xué)科排名




書(shū)目名稱Embeddings and Extensions in Analysis年度引用




書(shū)目名稱Embeddings and Extensions in Analysis年度引用學(xué)科排名




書(shū)目名稱Embeddings and Extensions in Analysis讀者反饋




書(shū)目名稱Embeddings and Extensions in Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:35:52 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:43:32 | 只看該作者
地板
發(fā)表于 2025-3-22 05:18:54 | 只看該作者
The Classes N(X) and RPD(X) : Integral Representations,s introduced by Schoenberg [79,80,81] and recently refined by Bretagnolle, Dacunha Castelle, and Krivine [11], and Kuelbs [52], we are going to present characterizations of the classes RPD(.) and .(.) when . is one of the spaces ?. or . (. = 1,2, … ; 0 < . ≤ ∞ ).
5#
發(fā)表于 2025-3-22 11:19:13 | 只看該作者
6#
發(fā)表于 2025-3-22 15:51:41 | 只看該作者
,The Extension Problem for Lipschitz-H?lder Maps between , Spaces, In this chapter we treat the natural and interesting generalization of this result to . spaces. Starting with two σ-finite measure spaces (Ω, μ) and (.) and initial values for . and . in [1, ∞], the problem is to determine those values of α for which the pair (.(μ), .(.)) has the extension property
7#
發(fā)表于 2025-3-22 17:48:38 | 只看該作者
Kandikere R. Sridhar,Namera C. Karunbedded in a given Banach space. First, we consider the question of which metric spaces (.) can be isometrically embedded in a Hilbert space ., that is, under what metric conditions does there exist a map ?: . → . such that $$|phi(s)-phi(t)|= ho(s,t)$$ (1.1) for all points . and . in .? Secondly, we
8#
發(fā)表于 2025-3-23 00:35:31 | 只看該作者
9#
發(fā)表于 2025-3-23 02:55:11 | 只看該作者
Anita Kumari,Jyoti Upadhyay,Rohit Joshire natural relatives of inequality (4.15) and the now standard inequalities of Clarkson. These inequalities are crucial to the problem of extending Lipschitz-H?lder maps of order a between . spaces (see §19). In addition they are of considerable intrinsic interest, a point we here emphasize by apply
10#
發(fā)表于 2025-3-23 08:30:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 00:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广丰县| 天门市| 绥芬河市| 拜泉县| 包头市| 榕江县| 余干县| 新邵县| 兴文县| 友谊县| 金门县| 岳西县| 浪卡子县| 潍坊市| 兰溪市| 奇台县| 鸡东县| 六枝特区| 广汉市| 芮城县| 两当县| 邵阳县| 湘西| 奉化市| 陆丰市| 西青区| 治县。| 牟定县| 五寨县| 东阳市| 于都县| 浦北县| 定结县| 天长市| 芦溪县| 屏山县| 宁南县| 通渭县| 久治县| 印江| 津南区|