找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Embedding Knowledge Graphs with RDF2vec; Heiko Paulheim,Petar Ristoski,Jan Portisch Book 2023 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
查看: 21096|回復(fù): 37
樓主
發(fā)表于 2025-3-21 18:31:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Embedding Knowledge Graphs with RDF2vec
編輯Heiko Paulheim,Petar Ristoski,Jan Portisch
視頻videohttp://file.papertrans.cn/308/307983/307983.mp4
概述Explains what are knowledge graph embeddings are and how they can be computed.Demonstrates how RDF2vec is used as a building block in AI applications.Discusses which variants of RDF2vec exist and when
叢書名稱Synthesis Lectures on Data, Semantics, and Knowledge
圖書封面Titlebook: Embedding Knowledge Graphs with RDF2vec;  Heiko Paulheim,Petar Ristoski,Jan Portisch Book 2023 The Editor(s) (if applicable) and The Author
描述.This book explains the ideas behind one of the most well-known methods for knowledge graph embedding of transformations to compute vector representations from a graph, known as RDF2vec. The authors describe its usage in practice, from reusing pre-trained knowledge graph embeddings to training tailored vectors for a knowledge graph at hand. They also demonstrate different extensions of RDF2vec and how they affect not only the downstream performance, but also the expressivity of the resulting vector representation, and analyze the resulting vector spaces and the semantic properties they encode..
出版日期Book 2023
關(guān)鍵詞Data mining; knowledge representation in AI; Knowledge Graph Embeddings; dynamic knowledge graphs; ontol
版次1
doihttps://doi.org/10.1007/978-3-031-30387-6
isbn_softcover978-3-031-30389-0
isbn_ebook978-3-031-30387-6Series ISSN 2691-2023 Series E-ISSN 2691-2031
issn_series 2691-2023
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Embedding Knowledge Graphs with RDF2vec影響因子(影響力)




書目名稱Embedding Knowledge Graphs with RDF2vec影響因子(影響力)學(xué)科排名




書目名稱Embedding Knowledge Graphs with RDF2vec網(wǎng)絡(luò)公開度




書目名稱Embedding Knowledge Graphs with RDF2vec網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Embedding Knowledge Graphs with RDF2vec被引頻次




書目名稱Embedding Knowledge Graphs with RDF2vec被引頻次學(xué)科排名




書目名稱Embedding Knowledge Graphs with RDF2vec年度引用




書目名稱Embedding Knowledge Graphs with RDF2vec年度引用學(xué)科排名




書目名稱Embedding Knowledge Graphs with RDF2vec讀者反饋




書目名稱Embedding Knowledge Graphs with RDF2vec讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:47:37 | 只看該作者
From Word Embeddings to Knowledge Graph Embeddings,n 2013 – and embeddings have gathered a tremendous uptake in the natural language processing community since then. Since RDF2vec is based on word2vec, we take a closer look at word2vec in this chapter. We explain how word2vec has been developed to represent words as vectors, and we discuss how this
板凳
發(fā)表于 2025-3-22 04:26:14 | 只看該作者
Benchmarking Knowledge Graph Embeddings,er introduces a few datasets and three common benchmarks for embedding methods—i.e., SW4ML, GEval, and DLCC—and shows how to use them for comparing different variants of RDF2vec. The novel DLCC benchmark allows us to take a closer look at what RDF2vec vectors actually represent, and to analyze what
地板
發(fā)表于 2025-3-22 08:09:32 | 只看該作者
Tweaking RDF2vec,weaks encompass various steps of the pipeline: reasoners have been used to preprocess the knowledge graph and add implicit knowledge. Different strategies for changing the walk strategy have been proposed, starting from injecting edge weights to biasing the walks towards higher or lower degree nodes
5#
發(fā)表于 2025-3-22 08:53:13 | 只看該作者
6#
發(fā)表于 2025-3-22 15:46:00 | 只看該作者
Link Prediction in Knowledge Graphs (and its Relation to RDF2vec),ification, which we have considered so far). In this chapter, we give a very brief overview of the main embedding techniques for link prediction and flesh out the main differences between the well-known link prediction technique TransE and RDF2vec. Moreover, we show how RDF2vec can be used for link
7#
發(fā)表于 2025-3-22 17:58:21 | 只看該作者
8#
發(fā)表于 2025-3-22 23:34:03 | 只看該作者
9#
發(fā)表于 2025-3-23 02:23:47 | 只看該作者
Sushil Kumar,Priyanka,Upendra Kumaring tasks, and we show classic feature extraction or propositionalization techniques, which are the historical predecessor of knowledge graph embeddings, and we show how these techniques are used for basic node classification tasks.
10#
發(fā)表于 2025-3-23 05:59:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 04:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高雄县| 从江县| 北辰区| 芜湖市| 易门县| 平谷区| 和平区| 玛多县| 马尔康县| 萨嘎县| 怀柔区| 澜沧| 灯塔市| 历史| 信宜市| 泰和县| 梅河口市| 彭水| 天长市| 富蕴县| 天全县| 丽水市| 永靖县| 苍南县| 临沧市| 浦江县| 百色市| 金坛市| 安乡县| 贵南县| 亳州市| 永泰县| 昌乐县| 兴宁市| 精河县| 互助| 南皮县| 长海县| 西峡县| 石门县| 泰兴市|