找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Embedded Random Matrix Ensembles in Quantum Physics; V.K.B. Kota Book 2014 Springer International Publishing Switzerland 2014 Embedded Ens

[復制鏈接]
21#
發(fā)表于 2025-3-25 04:16:09 | 只看該作者
22#
發(fā)表于 2025-3-25 11:12:43 | 只看該作者
Symmetries, Self Correlations and Cross Correlations in Embedded Ensembles,ectral variances. Results are presented for the correlations between matrix structure, symmetries and self and cross correlations in embedded ensembles using several fermionic and bosonic embedded ensembles described in the previous chapters. It is important to emphasize that “cross correlations” is one of the very important new aspect of EEs.
23#
發(fā)表于 2025-3-25 11:55:04 | 只看該作者
24#
發(fā)表于 2025-3-25 18:44:17 | 只看該作者
25#
發(fā)表于 2025-3-25 21:29:14 | 只看該作者
26#
發(fā)表于 2025-3-26 03:42:06 | 只看該作者
,P?dagogische und politische Perspektiven, .=1 degree of freedom. With GOE embedding, this gives BEGOE(1+2)-.1 ensemble. Besides defining these ensembles, a method for their construction is given. Algebraic properties of these ensembles are discussed and numerical results for some of the spectral properties generated by these two ensembles are presented.
27#
發(fā)表于 2025-3-26 06:22:50 | 只看該作者
Mensch und Landschaft in der Antiken are presented with examples for fermion systems with .=1, 2 and 4 and similarly, for boson systems with .=1, 2 and 3. In addition, results for the general spinless EGUE(.) and BEGUE(.) are also presented.
28#
發(fā)表于 2025-3-26 10:10:46 | 只看該作者
Stadtr?ume: ?ffentlichkeit für Frauen??BEGOE(1+2)-(..,..,…,..:.) ensembles for interacting boson systems with bosons in .-orbits and preserving many boson angular momentum?.; (iii)?Partitioned EGOE and K+EGOE ensembles considered in nuclear structure.
29#
發(fā)表于 2025-3-26 16:05:53 | 只看該作者
30#
發(fā)表于 2025-3-26 20:47:26 | 只看該作者
Book 2014m information science and statistical mechanics of isolated finite quantum systems can also be addressed using these ensembles..This book addresses graduate students and researchers with an interest in applications of random matrix theory to the modeling of more complex physical systems and interact
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 17:50
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
福州市| 赞皇县| 星座| 高台县| 渝北区| 香港 | 康保县| 霍州市| 拜泉县| 红河县| 阳朔县| 安塞县| 长岛县| 富裕县| 淅川县| 乌拉特前旗| 普安县| 安吉县| 八宿县| 海门市| 三亚市| 大名县| 固始县| 镇巴县| 临汾市| 浙江省| 上思县| 吉木乃县| 象山县| 平潭县| 淮阳县| 栖霞市| 龙门县| 神农架林区| 碌曲县| 武穴市| 武宁县| 卢龙县| 长乐市| 台州市| 晋江市|