找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing; Use Cases and Emergi Sudeep Pasricha,Muhammad Shafique Book 2024 The

[復(fù)制鏈接]
查看: 27185|回復(fù): 55
樓主
發(fā)表于 2025-3-21 17:29:51 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing
副標(biāo)題Use Cases and Emergi
編輯Sudeep Pasricha,Muhammad Shafique
視頻videohttp://file.papertrans.cn/308/307904/307904.mp4
概述Discusses efficient implementation of machine learning in embedded, CPS, IoT.Offers comprehensive coverage of hardware design, software design.Describes real applications to demonstrate how embedded,
圖書(shū)封面Titlebook: Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing; Use Cases and Emergi Sudeep Pasricha,Muhammad Shafique Book 2024 The
描述.This book presents recent advances towards the?goal of?enabling efficient implementation of?machine learning models on?resource-constrained systems, covering different application domains. The?focus is on?presenting interesting and new use cases of?applying machine learning to?innovative application domains, exploring the?efficient hardware design of?efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for?energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for?achieving even greater energy, reliability, and performance benefits..Discusses efficient implementation of?machine learning in embedded, CPS, IoT, and edge computing;?.Offers comprehensive coverage of?hardware design, software design, and hardware/software co-design and co-optimization;?.Describes real applications to?demonstrate how embedded, CPS, IoT, and edge applications benefit from?machine learning..
出版日期Book 2024
關(guān)鍵詞Machine learning embedded systems; Machine learning IoT; Machine learning edge computing; Smart Cyber-P
版次1
doihttps://doi.org/10.1007/978-3-031-40677-5
isbn_softcover978-3-031-40679-9
isbn_ebook978-3-031-40677-5
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing影響因子(影響力)




書(shū)目名稱(chēng)Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing被引頻次




書(shū)目名稱(chēng)Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing被引頻次學(xué)科排名




書(shū)目名稱(chēng)Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing年度引用




書(shū)目名稱(chēng)Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing年度引用學(xué)科排名




書(shū)目名稱(chēng)Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing讀者反饋




書(shū)目名稱(chēng)Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:15:56 | 只看該作者
An End-to-End Embedded Neural Architecture Search and Model Compression Framework for Healthcare App, by acting as clinical assistants, to analyzing electronic health records, deep learning models have proved to be beneficial in identifying health abnormalities and aiding diagnostics. This chapter discusses a framework that can be used to explore the design space of embedded neural network models
板凳
發(fā)表于 2025-3-22 02:50:36 | 只看該作者
地板
發(fā)表于 2025-3-22 08:27:00 | 只看該作者
5#
發(fā)表于 2025-3-22 09:37:49 | 只看該作者
Edge-Centric Optimization of Multi-modal ML-Driven eHealth Applicationsnd data analytics. Smart eHealth applications sense input data from multiple modalities, transmit the data to edge and/or cloud nodes, and process the data with compute-intensive machine learning (ML) algorithms. Run-time variations with continuous stream of noisy input data, unreliable network conn
6#
發(fā)表于 2025-3-22 14:56:11 | 只看該作者
A Survey of Embedded Machine Learning for Smart and Sustainable Healthcare Applicationsly combines these concepts, leading to new application areas. Specifically, machine learning algorithms offer reliable decision-making, classification, and regression performance, while embedded devices allow these algorithms to run at the edge with limited computational power. New embedded devices
7#
發(fā)表于 2025-3-22 19:33:52 | 只看該作者
Reinforcement Learning for Energy-Efficient Cloud Offloading of Mobile Embedded Applicationson response time. Offloading refers to the act of transferring computations from a mobile device to servers in the cloud. We believe that the effect of different wireless network technologies such as 3G, 4G, and Wi-Fi on the performance of offloading is a major concern that needs to be addressed. Ne
8#
發(fā)表于 2025-3-22 22:31:20 | 只看該作者
Context-Aware Adaptive Anomaly Detection in IoT Systemsability challenges require a holistic solution due to the cross-domain, cross-layer, and interdisciplinary nature of IoT systems. However, most works presented in the literature primarily focus on the cyber aspect, including the network and application layers, and the physical layer is overlooked. I
9#
發(fā)表于 2025-3-23 03:22:46 | 只看該作者
Machine Learning Components for Autonomous Navigation Systemshuman supervision. Such systems have several intermediate tasks such as sensor data fusion, perception, planning, etc., that are critical for safe operation in the real world. Traditional CPS systems used model-based algorithms for such tasks that required domain knowledge, but in recent years machi
10#
發(fā)表于 2025-3-23 05:57:17 | 只看該作者
Machine Learning for Efficient Perception in Automotive Cyber-Physical Systemsand performance goals. Enabling robust perception for vehicles with ADAS requires solving multiple complex problems related to the selection and placement of sensors, object detection, and sensor fusion. Current methods address these problems in isolation, which leads to inefficient solutions. We pr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 00:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武乡县| 高淳县| 灵台县| 琼中| 霍邱县| 温泉县| 连州市| 菏泽市| 准格尔旗| 西峡县| 观塘区| 渑池县| 高碑店市| 凤山市| 股票| 连山| 罗江县| 平安县| 日土县| 永登县| 衡东县| 南陵县| 米泉市| 呈贡县| 盐边县| 黄浦区| 皋兰县| 建平县| 大理市| 全南县| 柯坪县| 濮阳县| 历史| 彭州市| 大英县| 富川| 探索| 会宁县| 阜城县| 青浦区| 铜山县|