找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptically Contoured Models in Statistics and Portfolio Theory; Arjun K. Gupta,Tamas Varga,Taras Bodnar Book 2013Latest edition Springer

[復(fù)制鏈接]
樓主: 我贊成
31#
發(fā)表于 2025-3-26 21:46:22 | 只看該作者
32#
發(fā)表于 2025-3-27 04:43:09 | 只看該作者
33#
發(fā)表于 2025-3-27 05:49:33 | 只看該作者
Hypothesis TestingBefore studying concrete hypotheses, we derive some general theorems. These results are based on Anderson, Fang, and Hsu (.) and Hsu (.).
34#
發(fā)表于 2025-3-27 12:24:04 | 只看該作者
35#
發(fā)表于 2025-3-27 14:44:49 | 只看該作者
https://doi.org/10.1007/978-3-662-28439-1mal distributionsis defined in this chapter. Furthermore, we present another way to obtain the p.d.f. of a matrix variate elliptically contoured distribution from the density functions of matrix variate normal distributions. For this purpose, Laplace transform is used.
36#
發(fā)表于 2025-3-27 18:58:10 | 只看該作者
37#
發(fā)表于 2025-3-27 23:58:16 | 只看該作者
Mixtures of Normal Distributionsmal distributionsis defined in this chapter. Furthermore, we present another way to obtain the p.d.f. of a matrix variate elliptically contoured distribution from the density functions of matrix variate normal distributions. For this purpose, Laplace transform is used.
38#
發(fā)表于 2025-3-28 03:11:49 | 只看該作者
39#
發(fā)表于 2025-3-28 09:36:16 | 只看該作者
Preliminariesese distributions provedto be useful in statistical inference. For example, the Wishart distribution is essential when studying the sample covariance matrix in the multivariate normal theory. Random matricescan also be used to describe repeated measurements on multivariate variables. In this case,th
40#
發(fā)表于 2025-3-28 12:16:12 | 只看該作者
Basic Propertiesand Sutradhar and Ali(1989). We use the definition given in Gupta and Varga (1994b). Moreover, we present somebasic properties of matrix variate elliptically contoured distributions, such as the stochasticrepresentation, the conditional and marginal distributions. Finally, several families of matrix
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 05:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仓市| 太白县| 富民县| 淄博市| 广州市| 板桥市| 百色市| 宾川县| 姚安县| 区。| 琼结县| 陆良县| 宁化县| 漠河县| 平度市| 武强县| 通许县| 湖南省| 同心县| 永丰县| 扎兰屯市| 清水河县| 清水县| 无极县| 当雄县| 句容市| 连平县| 平陆县| 宝鸡市| 开阳县| 沙田区| 咸丰县| 安泽县| 寿光市| 当涂县| 龙海市| 奉化市| 营口市| 宜章县| 浠水县| 来宾市|