找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptically Contoured Models in Statistics; A. K. Gupta,T. Varga Book 1993 Kluwer Academic Publishers 1993 algebra.matrices.matrix.normal

[復(fù)制鏈接]
樓主: Halloween
11#
發(fā)表于 2025-3-23 12:53:26 | 只看該作者
Mixtures of Normal Distributions,Muirhead (1982) gave a definition of scale mixture of vector variate normal distributions. Using Corollary 2.7.4.1, the scale mixture of matrix variate normal distributions can be defined as follows (Gupta and Varga, 1992c).
12#
發(fā)表于 2025-3-23 14:30:17 | 只看該作者
13#
發(fā)表于 2025-3-23 21:33:39 | 只看該作者
Characterization Results,In this section, we characterize the parameters of m.e.c. distributions which are invariant under certain linear transformations. First we prove the following lemma.
14#
發(fā)表于 2025-3-23 22:19:48 | 只看該作者
15#
發(fā)表于 2025-3-24 05:15:01 | 只看該作者
16#
發(fā)表于 2025-3-24 09:12:36 | 只看該作者
https://doi.org/10.1057/9781137477859ese distributions proved to be useful in statistical inference. For example, the Wishart distribution is essential when studying the sample covariance matrix in the multivariate normal theory. Random matrices can also be used to describe repeated measurements on multivariate variables. In this case,
17#
發(fā)表于 2025-3-24 11:47:33 | 只看該作者
Time-Varying Electric and Magnetic Fields,own matrix. Moreover, assume that x., i = l,...,n are uncorrelated and their joint distribution is elliptically contoured and absolutely continuous. This model can be expressed as .where X = (x., x.,...,x.); Z = (z., z.,...,z.) is a q × n known matrix; B (p × q) and Σ (p × p) are unknown matrices. A
18#
發(fā)表于 2025-3-24 15:30:44 | 只看該作者
19#
發(fā)表于 2025-3-24 20:46:01 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/e/image/307811.jpg
20#
發(fā)表于 2025-3-25 01:27:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太湖县| 道真| 焦作市| 吉林省| 建昌县| 呈贡县| 苗栗县| 河东区| 丰原市| 石景山区| 博爱县| 白河县| 南汇区| 元朗区| 云浮市| 家居| 上栗县| 吴忠市| 永修县| 射洪县| 闻喜县| 内江市| 高要市| 蓝田县| 隆子县| 栾城县| 普陀区| 上林县| 汉源县| 三台县| 亚东县| 通山县| 社旗县| 崇仁县| 茂名市| 上饶县| 四平市| 四子王旗| 华蓥市| 长沙市| 雷州市|