找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Modular Functions; An Introduction Bruno Schoeneberg Book 1974 Springer-Verlag Berlin Heidelberg 1974 Elliptische Modulfunktion.Fi

[復(fù)制鏈接]
查看: 11604|回復(fù): 41
樓主
發(fā)表于 2025-3-21 17:27:24 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Elliptic Modular Functions
副標題An Introduction
編輯Bruno Schoeneberg
視頻videohttp://file.papertrans.cn/308/307798/307798.mp4
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Elliptic Modular Functions; An Introduction Bruno Schoeneberg Book 1974 Springer-Verlag Berlin Heidelberg 1974 Elliptische Modulfunktion.Fi
描述This book is a fully detailed introduction to the theory of modular functions of a single variable. I hope that it will fill gaps which in view ofthe lively development ofthis theory have often been an obstacle to the students‘ progress. The study of the book requires an elementary knowledge of algebra, number theory and topology and a deeper knowledge of the theory of functions. An extensive discussion of the modular group SL(2, Z) is followed by the introduction to the theory of automorphic functions and auto- morphic forms of integral dimensions belonging to SL(2,Z). The theory is developed first via the Riemann mapping theorem and then again with the help of Eisenstein series. An investigation of the subgroups of SL(2, Z) and the introduction of automorphic functions and forms belonging to these groups folIows. Special attention is given to the subgroups of finite index in SL (2, Z) and, among these, to the so-called congruence groups. The decisive role in this setting is assumed by the Riemann-Roch theorem. Since its proof may be found in the literature, only the pertinent basic concepts are outlined. For the extension of the theory, special fields of modular functions- in par
出版日期Book 1974
關(guān)鍵詞Elliptische Modulfunktion; Finite; Functions; Modular form; congruence; construction; convergence; developm
版次1
doihttps://doi.org/10.1007/978-3-642-65663-7
isbn_softcover978-3-642-65665-1
isbn_ebook978-3-642-65663-7Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 1974
The information of publication is updating

書目名稱Elliptic Modular Functions影響因子(影響力)




書目名稱Elliptic Modular Functions影響因子(影響力)學(xué)科排名




書目名稱Elliptic Modular Functions網(wǎng)絡(luò)公開度




書目名稱Elliptic Modular Functions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Elliptic Modular Functions被引頻次




書目名稱Elliptic Modular Functions被引頻次學(xué)科排名




書目名稱Elliptic Modular Functions年度引用




書目名稱Elliptic Modular Functions年度引用學(xué)科排名




書目名稱Elliptic Modular Functions讀者反饋




書目名稱Elliptic Modular Functions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:42:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:52:21 | 只看該作者
Eisenstein Series of Higher Level,sions, namely by Eisenstein series of higher level. Here, in contrast to Chapter ., the integral dimension is not required to be even. This will lead to an important difference between forms for the homogeneous group .(.) and forms for the homogeneous group .[.], however, for their fields of automor
地板
發(fā)表于 2025-3-22 06:53:27 | 只看該作者
5#
發(fā)表于 2025-3-22 10:07:15 | 只看該作者
6#
發(fā)表于 2025-3-22 14:30:57 | 只看該作者
7#
發(fā)表于 2025-3-22 18:32:50 | 只看該作者
8#
發(fā)表于 2025-3-22 22:19:10 | 只看該作者
9#
發(fā)表于 2025-3-23 04:39:16 | 只看該作者
,The Integrals of ?-Division Values,). We then investigate the behavior of our functions under arbitrary modular transformations applying an often used method due to E. Hecke[2], p. 224 or [3], p. 442. In the course of study we encounter the socalled Dedekind sums.
10#
發(fā)表于 2025-3-23 08:59:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 09:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
漳浦县| 宁化县| 昭平县| 西乌| 和田市| 大港区| 乌拉特后旗| 成安县| 会昌县| 云南省| 阿图什市| 莱芜市| 封丘县| 高淳县| 济源市| 芜湖县| 瑞安市| 莆田市| 兴城市| 佛学| 同仁县| 衡东县| 盖州市| 同心县| 当涂县| 泸水县| 合江县| 灵石县| 陆河县| 博湖县| 延津县| 洛宁县| 特克斯县| 仙居县| 勐海县| 清河县| 铁力市| 新津县| 荔浦县| 广安市| 鹤壁市|