找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Functions according to Eisenstein and Kronecker; André Weil Book Dec 1998Latest edition Springer-Verlag Berlin Heidelberg 1976 Et

[復(fù)制鏈接]
樓主: Concave
21#
發(fā)表于 2025-3-25 05:00:51 | 只看該作者
22#
發(fā)表于 2025-3-25 08:24:56 | 只看該作者
https://doi.org/10.1007/978-3-322-91979-3er, this case provides, not merely an illuminating introduction to his theory, but also the simplest proofs for a series of results, originally discovered by Euler, which will have to be used later on.
23#
發(fā)表于 2025-3-25 14:12:36 | 只看該作者
24#
發(fā)表于 2025-3-25 18:29:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:07:59 | 只看該作者
Finale: Allegro con brio to indicate how he wished it completed. Kronecker, having conceived ambitious plans for a vastly enlarged edifice, started, rather late in life, to dig deeper foundations but found time for little else. It is idle to speculate about the kind of continuation he had in mind; perhaps he did not know it himself.
26#
發(fā)表于 2025-3-26 02:40:29 | 只看該作者
27#
發(fā)表于 2025-3-26 05:09:42 | 只看該作者
The Basic Elliptic Functionss of the points ., where . are integers. Then . is not real and may be written as ., where . and τ is in the upper half-plane; sometimes it will be convenient to write . for .. We write ... with . as defined in Chap. II, §7, and we will always take for . the branch given by q.=e(τ/2); we have |q|<1.
28#
發(fā)表于 2025-3-26 11:04:31 | 只看該作者
29#
發(fā)表于 2025-3-26 14:09:25 | 只看該作者
Variation I Chap. II, § 5), much of Kronecker’s best work consists of such variations, although Kronecker could of course not refrain from adding some themes of his own to Eisenstein’s; this will be discussed in Chap. VII and VIII. In this chapter and the next one, we will stay closer to Eisenstein; as an exam
30#
發(fā)表于 2025-3-26 20:40:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 05:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富民县| 汤原县| 镇沅| 无棣县| 共和县| 怀来县| 灌阳县| 胶州市| 武夷山市| 辰溪县| 桦南县| 区。| 汉寿县| 迁西县| 东乡| 奉化市| 方城县| 赣榆县| 东平县| 小金县| 遵化市| 行唐县| 博湖县| 石棉县| 灵宝市| 冷水江市| 德化县| 贵德县| 壶关县| 宁阳县| 贺州市| 板桥市| 龙州县| 江口县| 阿克苏市| 宁安市| 太康县| 璧山县| 德昌县| 临潭县| 东丰县|