找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Functions; Komaravolu Chandrasekharan Textbook 1985 Springer-Verlag Berlin Heidelberg 1985 Complex analysis.Functions.Meromorphic

[復制鏈接]
樓主: OBESE
21#
發(fā)表于 2025-3-25 06:29:38 | 只看該作者
22#
發(fā)表于 2025-3-25 09:12:00 | 只看該作者
23#
發(fā)表于 2025-3-25 12:19:06 | 只看該作者
24#
發(fā)表于 2025-3-25 16:27:30 | 只看該作者
25#
發(fā)表于 2025-3-25 21:37:19 | 只看該作者
Periods of meromorphic functions,We assume as known the fundamentals of complex analysis, including the basic properties of . and of . functions in the . The meromorphic functions defined on an ., set in the complex plane form a . Unless otherwise qualified, a meromorphic function is supposed to mean a function meromorphic in the whole complex plane.
26#
發(fā)表于 2025-3-26 00:49:55 | 只看該作者
General properties of elliptic functions,Given an elliptic function ., let (. .) be a pair of . periods for its period-lattice {. .}, where m, . = 0, ±1, ±2,....
27#
發(fā)表于 2025-3-26 04:52:48 | 只看該作者
The zeta-function and the sigma-function of Weierstrass,Weierstrass’s ζ-function is a meromorphic function, which has . poles, with residues equal to one, at all points which correspond to the periods of Weierstrass’s ?-function. It is . elliptic. But every elliptic function can be expressed in terms of ζ and its derivatives; in fact ζ.(.)= -?(.).
28#
發(fā)表于 2025-3-26 10:11:35 | 只看該作者
29#
發(fā)表于 2025-3-26 15:45:57 | 只看該作者
The law of quadratic reciprocity,As a limiting case of the transformation formula connecting the theta-function .(., .) with ., we shall prove a transformation formula for exponential sums (Theorem 1), which yields, as a special case, a reciprocity formula for . (Corollary 2) which, in turn, enables us not only to evaluate . but to prove the law of quadratic reciprocity.
30#
發(fā)表于 2025-3-26 17:27:55 | 只看該作者
,Dedekind’s η-function and Euler’s theorem on pentagonal numbers,
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
邓州市| 沛县| 景德镇市| 江津市| 辽阳市| 曲周县| 浮山县| 肃南| 普兰县| 石林| 固安县| 黄骅市| 夹江县| 江陵县| 响水县| 革吉县| 抚州市| 大名县| 慈利县| 赤城县| 随州市| 新河县| 洪湖市| 天津市| 敖汉旗| 全州县| 宜兰县| 凌源市| 临泉县| 年辖:市辖区| 闽清县| 大姚县| 朝阳市| 响水县| 新建县| 肥城市| 分宜县| 明水县| 建湖县| 体育| 成安县|