找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Extensions in Statistical and Stochastic Systems; Makoto Katori Book 2023 The Author(s), under exclusive license to Springer Natu

[復(fù)制鏈接]
樓主: 加冕
21#
發(fā)表于 2025-3-25 05:16:19 | 只看該作者
22#
發(fā)表于 2025-3-25 08:43:41 | 只看該作者
978-981-19-9526-2The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
23#
發(fā)表于 2025-3-25 14:09:32 | 只看該作者
24#
發(fā)表于 2025-3-25 16:53:21 | 只看該作者
https://doi.org/10.1007/978-981-19-9527-9q-extensions and elliptic extensions; Probability theory and stochastic processes; Statistical physics
25#
發(fā)表于 2025-3-26 00:01:34 | 只看該作者
26#
發(fā)表于 2025-3-26 02:42:12 | 只看該作者
Brownian Motion and Theta Functions,ngle delta function. Then we consider the Brownian motion on a unit circle, which is regarded as a one-dimensional torus and is denoted by .. Two different formulas of the transition probability are given, both of which are expressed using the theta function with different nomes. The equivalence of
27#
發(fā)表于 2025-3-26 06:48:36 | 只看該作者
Biorthogonal Systems of Theta Functions and Macdonald Denominators,? Rosengren and Schlosser gave seven kinds of answers to this fundamental question by introducing seven infinite series of spaces of theta functions associated with the irreducible reduced affine root systems, ., ., ., ., ., ., ., and ., .. Here . indicates the degree of the elliptic analogues of po
28#
發(fā)表于 2025-3-26 09:05:44 | 只看該作者
29#
發(fā)表于 2025-3-26 14:31:41 | 只看該作者
30#
發(fā)表于 2025-3-26 19:10:03 | 只看該作者
Doubly Periodic Determinantal Point Processes,ument . of these functions to complex variable . and define seven types of orthonormal . theta functions . in the fundamental domain . in ., which is given by a . rectangular domain. Then seven types of DPPs are introduced so that the correlation functions are expressed by the orthonormal functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 07:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长汀县| 交口县| 兖州市| 庄河市| 正安县| 江西省| 芮城县| 铁岭市| 渝中区| 香格里拉县| 莱西市| 易门县| 卓尼县| 河曲县| 丹寨县| 德钦县| 沧源| 深圳市| 鹤山市| 彰化市| 北流市| 三原县| 岳普湖县| 乌海市| 吐鲁番市| 齐河县| 交口县| 临汾市| 沙田区| 太谷县| 开江县| 乌兰浩特市| 十堰市| 常州市| 沈阳市| 赤水市| 巴彦县| 伊川县| 威信县| 康马县| 上蔡县|