找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Extensions in Statistical and Stochastic Systems; Makoto Katori Book 2023 The Author(s), under exclusive license to Springer Natu

[復(fù)制鏈接]
樓主: 加冕
11#
發(fā)表于 2025-3-23 09:46:45 | 只看該作者
Book 2023analogue, and elliptic-analogue. Based on the addition formula and associated mathematical structures, productive studies have been carried out in the process of .q.-extension of the rational (classical) formulas in enumerative combinatorics, theory of special functions, representation theory, study
12#
發(fā)表于 2025-3-23 16:04:35 | 只看該作者
13#
發(fā)表于 2025-3-23 19:26:29 | 只看該作者
14#
發(fā)表于 2025-3-23 22:14:29 | 只看該作者
https://doi.org/10.1007/978-3-322-93175-7ngle delta function. Then we consider the Brownian motion on a unit circle, which is regarded as a one-dimensional torus and is denoted by .. Two different formulas of the transition probability are given, both of which are expressed using the theta function with different nomes. The equivalence of
15#
發(fā)表于 2025-3-24 05:37:57 | 只看該作者
16#
發(fā)表于 2025-3-24 08:22:59 | 只看該作者
17#
發(fā)表于 2025-3-24 14:07:07 | 只看該作者
https://doi.org/10.1007/978-3-663-14751-0time duration [0,?.]. Here we define the correlation functions and their generating function called the characteristic function, which specify the point process. In particular, if all correlation functions are expressed by determinants specified by a two-point continuous function, then the point pro
18#
發(fā)表于 2025-3-24 15:07:42 | 只看該作者
19#
發(fā)表于 2025-3-24 22:57:49 | 只看該作者
20#
發(fā)表于 2025-3-25 02:48:12 | 只看該作者
Makoto KatoriExplains elliptic extensions using the Brownian motion and determinantal point processes.Uses only one kind of special function, called the theta function, and visualizes elliptic extensions using gra
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 15:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
夏邑县| 陈巴尔虎旗| 新邵县| 裕民县| 鸡西市| 苏尼特左旗| 定南县| 炉霍县| 鲜城| 杭州市| 龙口市| 正安县| 广汉市| 舞钢市| 辽中县| 子长县| 浦县| 龙山县| 龙泉市| 军事| 沁源县| 石首市| 嘉义县| 临泽县| 兴海县| 石景山区| 长白| 万州区| 曲周县| 思茅市| 曲麻莱县| 香港 | 平泉县| 于田县| 廊坊市| 游戏| 理塘县| 安丘市| 阜城县| 祁门县| 前郭尔|