找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Extensions in Statistical and Stochastic Systems; Makoto Katori Book 2023 The Author(s), under exclusive license to Springer Natu

[復(fù)制鏈接]
樓主: 加冕
11#
發(fā)表于 2025-3-23 09:46:45 | 只看該作者
Book 2023analogue, and elliptic-analogue. Based on the addition formula and associated mathematical structures, productive studies have been carried out in the process of .q.-extension of the rational (classical) formulas in enumerative combinatorics, theory of special functions, representation theory, study
12#
發(fā)表于 2025-3-23 16:04:35 | 只看該作者
13#
發(fā)表于 2025-3-23 19:26:29 | 只看該作者
14#
發(fā)表于 2025-3-23 22:14:29 | 只看該作者
https://doi.org/10.1007/978-3-322-93175-7ngle delta function. Then we consider the Brownian motion on a unit circle, which is regarded as a one-dimensional torus and is denoted by .. Two different formulas of the transition probability are given, both of which are expressed using the theta function with different nomes. The equivalence of
15#
發(fā)表于 2025-3-24 05:37:57 | 只看該作者
16#
發(fā)表于 2025-3-24 08:22:59 | 只看該作者
17#
發(fā)表于 2025-3-24 14:07:07 | 只看該作者
https://doi.org/10.1007/978-3-663-14751-0time duration [0,?.]. Here we define the correlation functions and their generating function called the characteristic function, which specify the point process. In particular, if all correlation functions are expressed by determinants specified by a two-point continuous function, then the point pro
18#
發(fā)表于 2025-3-24 15:07:42 | 只看該作者
19#
發(fā)表于 2025-3-24 22:57:49 | 只看該作者
20#
發(fā)表于 2025-3-25 02:48:12 | 只看該作者
Makoto KatoriExplains elliptic extensions using the Brownian motion and determinantal point processes.Uses only one kind of special function, called the theta function, and visualizes elliptic extensions using gra
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 15:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宣化县| 伊宁市| 云安县| 志丹县| 新乐市| 兴仁县| 阿鲁科尔沁旗| 繁昌县| 左云县| 青岛市| 平南县| 吴堡县| 萨迦县| 隆昌县| 天津市| 建水县| 青铜峡市| 长武县| 含山县| 南康市| 高雄市| 江津市| 上饶县| 宁武县| 渝中区| 吉安市| 巫山县| 囊谦县| 梁山县| 大宁县| 通辽市| 宝应县| 高州市| 图木舒克市| 隆安县| 海阳市| 奎屯市| 迁安市| 阿拉善左旗| 日照市| 沂南县|