找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curves, Modular Forms and Cryptography; Proceedings of the A Ashwani K. Bhandari,D. S. Nagaraj,T. N. Venkataram Conference proceed

[復(fù)制鏈接]
樓主: 不幸的你
31#
發(fā)表于 2025-3-26 23:49:38 | 只看該作者
32#
發(fā)表于 2025-3-27 04:59:03 | 只看該作者
Fourier-Reihen und Fourier-Transformation, this part of the book various aspects of the theory of Elliptic curves are treated. Here we give a brief description of the contents of the articles in the order in which they appear. Firstly, there is a quick introductory article by D.S. Nagaraj and B. Sury, in which some basic notations of algebr
33#
發(fā)表于 2025-3-27 07:32:30 | 只看該作者
34#
發(fā)表于 2025-3-27 10:32:40 | 只看該作者
Grundlagen der mathematischen Statistik,oup. In other words, .(.) ? ?. ⊕ . where . is a finite abelian group, the torsion subgroup. One refers to .(.) as the Mordell-Weil group of . over .. Geometrically, if one is given a system of generators for .(.), then one can produce all the points by the chord and tangent process. This means that
35#
發(fā)表于 2025-3-27 13:58:32 | 只看該作者
,Gew?hnliche Differentialgleichungen, a central role in many questions about elliptic curves with Complex Multiplication (also called CM elliptic curves for short). The theorem gives precise information about the field obtained by attaching the (co-ordinates of) torsion points of Complex Multiplication elliptic curves.
36#
發(fā)表于 2025-3-27 20:47:54 | 只看該作者
37#
發(fā)表于 2025-3-28 01:22:16 | 只看該作者
38#
發(fā)表于 2025-3-28 03:18:20 | 只看該作者
Komplexe Zahlen und Funktionen,rve C of genus . over .. The idea is to show how the arithmetic properties of algebraic curves are governed by the familiar trichotomy: . = 0, . = 1, . ≥ 2. Only incidentally shall we mention fields other than . and varieties other than curves.
39#
發(fā)表于 2025-3-28 07:41:12 | 只看該作者
https://doi.org/10.1007/978-3-8348-8643-9se branches of Mathematics coming together in the theory of Elliptic Curves and Modular Forms to solve one of the outstanding problems in Number Theory, viz., ‘The Fermat’s Last Theorem’. In Part I of this volume, various aspects of the theory of Elliptic Curves are given. In Part II, we discuss som
40#
發(fā)表于 2025-3-28 14:06:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邵武市| 龙泉市| 安多县| 昌平区| 兖州市| 延边| 五原县| 容城县| 张家界市| 龙门县| 桓台县| 安图县| 汉中市| 黑水县| 孝昌县| 陈巴尔虎旗| 修水县| 鞍山市| 曲水县| 五原县| 资溪县| 龙胜| 临沂市| 贺兰县| 桐庐县| 陇川县| 正镶白旗| 肃北| 岳西县| 澜沧| 溧阳市| 开远市| 延庆县| 怀柔区| 成武县| 山阳县| 石狮市| 临漳县| 安吉县| 潮州市| 芷江|