找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curves, Hilbert Modular Forms and Galois Deformations; Laurent Berger,Gebhard B?ckle,John Voight Textbook 2013 Springer Basel 201

[復(fù)制鏈接]
查看: 11756|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:08:05 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Elliptic Curves, Hilbert Modular Forms and Galois Deformations
編輯Laurent Berger,Gebhard B?ckle,John Voight
視頻videohttp://file.papertrans.cn/308/307781/307781.mp4
概述The book contains the first published notes on the recent developments and major changes in Galois deformation theory during the last decade (deformations of pseudo-representations, framed deformation
叢書名稱Advanced Courses in Mathematics - CRM Barcelona
圖書封面Titlebook: Elliptic Curves, Hilbert Modular Forms and Galois Deformations;  Laurent Berger,Gebhard B?ckle,John Voight Textbook 2013 Springer Basel 201
描述.The notes in this volume correspond to advanced courses held at the Centre de Recerca Matemàtica as part of the research program in Arithmetic Geometry in the 2009-2010 academic year..The notes by Laurent Berger provide an introduction to .p.-adic Galois representations and Fontaine rings, which are especially useful for describing many local deformation rings at .p. that arise naturally in Galois deformation theory..The notes by Gebhard B?ckle offer a comprehensive course on Galois deformation theory, starting from the foundational results of Mazur and discussing in detail the theory of pseudo-representations and their deformations, local deformations at places l ≠ p and local deformations at .p. which are flat. In the last section,the results of B?ckle and Kisin on presentations of global deformation rings over local ones are discussed..?The notes by Mladen Dimitrov present the basics of the arithmetic theory of Hilbert modular forms and varieties, with an emphasis on the study of the images of the attached Galois representations, on modularity lifting theorems over totally real number fields, and on the cohomology of Hilbert modular varieties with integral coefficients..?The no
出版日期Textbook 2013
關(guān)鍵詞Galois representations; Hilbert modular forms; elliptic curves
版次1
doihttps://doi.org/10.1007/978-3-0348-0618-3
isbn_softcover978-3-0348-0617-6
isbn_ebook978-3-0348-0618-3Series ISSN 2297-0304 Series E-ISSN 2297-0312
issn_series 2297-0304
copyrightSpringer Basel 2013
The information of publication is updating

書目名稱Elliptic Curves, Hilbert Modular Forms and Galois Deformations影響因子(影響力)




書目名稱Elliptic Curves, Hilbert Modular Forms and Galois Deformations影響因子(影響力)學(xué)科排名




書目名稱Elliptic Curves, Hilbert Modular Forms and Galois Deformations網(wǎng)絡(luò)公開度




書目名稱Elliptic Curves, Hilbert Modular Forms and Galois Deformations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Elliptic Curves, Hilbert Modular Forms and Galois Deformations被引頻次




書目名稱Elliptic Curves, Hilbert Modular Forms and Galois Deformations被引頻次學(xué)科排名




書目名稱Elliptic Curves, Hilbert Modular Forms and Galois Deformations年度引用




書目名稱Elliptic Curves, Hilbert Modular Forms and Galois Deformations年度引用學(xué)科排名




書目名稱Elliptic Curves, Hilbert Modular Forms and Galois Deformations讀者反饋




書目名稱Elliptic Curves, Hilbert Modular Forms and Galois Deformations讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:08:14 | 只看該作者
Arithmetic Aspects of Hilbert Modular Forms and Varietiesreplaced by a totally real number field. The aim of these notes is to present the basics of their arithmetic theory and to describe some of the recent results in the area. A special emphasis will be put on the following two subjects: images of Galois representations associated to Hilbert modular for
板凳
發(fā)表于 2025-3-22 01:41:34 | 只看該作者
Explicit Methods for Hilbert Modular Formsa wide variety of mathematical problems. This subject has seen dramatic progress during the past half-century in an environment where both abstract theory and explicit computation have developed in parallel. Experiments will remain an essential tool in the years ahead, especially as we turn from cla
地板
發(fā)表于 2025-3-22 05:30:58 | 只看該作者
Notes on the Parity Conjectureecture for elliptic curves over number fields. Along the way, we review local and global root numbers of elliptic curves and their classification, and we end by discussing some peculiar consequences of the parity conjecture.
5#
發(fā)表于 2025-3-22 12:38:34 | 只看該作者
https://doi.org/10.1007/978-3-322-91789-8a wide variety of mathematical problems. This subject has seen dramatic progress during the past half-century in an environment where both abstract theory and explicit computation have developed in parallel. Experiments will remain an essential tool in the years ahead, especially as we turn from classical contexts to less familiar terrain.
6#
發(fā)表于 2025-3-22 14:44:19 | 只看該作者
Komplexe Zahlen und Funktionen,ecture for elliptic curves over number fields. Along the way, we review local and global root numbers of elliptic curves and their classification, and we end by discussing some peculiar consequences of the parity conjecture.
7#
發(fā)表于 2025-3-22 18:37:48 | 只看該作者
8#
發(fā)表于 2025-3-23 00:01:32 | 只看該作者
Notes on the Parity Conjectureecture for elliptic curves over number fields. Along the way, we review local and global root numbers of elliptic curves and their classification, and we end by discussing some peculiar consequences of the parity conjecture.
9#
發(fā)表于 2025-3-23 02:03:46 | 只看該作者
10#
發(fā)表于 2025-3-23 08:22:44 | 只看該作者
Laurent Berger,Gebhard B?ckle,John VoightThe book contains the first published notes on the recent developments and major changes in Galois deformation theory during the last decade (deformations of pseudo-representations, framed deformation
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
咸宁市| 通辽市| 咸阳市| 兴国县| 荥经县| 宣化县| 珲春市| 女性| 塔河县| 江油市| 玉门市| 建德市| 当阳市| 团风县| 雅江县| 郁南县| 云安县| 上林县| 盐城市| 普陀区| 凤城市| 略阳县| 措美县| 永川市| 济阳县| 新野县| 庐江县| 兴化市| 高雄县| 双牌县| 门源| 大埔县| 鹤庆县| 肥西县| 柞水县| 江口县| 喀喇沁旗| 奉节县| 镇安县| 天镇县| 锡林浩特市|