找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curves over Number Fields with Prescribed Reduction Type; Michael Laska Book 1983 Springer Fachmedien Wiesbaden 1983 Algebra.Endl

[復(fù)制鏈接]
樓主: GUST
11#
發(fā)表于 2025-3-23 09:41:06 | 只看該作者
Skalarprodukt und orthogonale AbbildungenIn this chapter we give an explicit parametrization in terms of a certain diophantine equation over K of all elliptic curves over K with good reduction outside a given finite set of prime ideals in ..
12#
發(fā)表于 2025-3-23 16:48:37 | 只看該作者
Reduction of elliptic curves,In this chapter we state the basic facts about reduction of elliptic curves over K. More detailed informations about elliptic curves may be obtained, for example, from Tate’s [Ta 1] or Stroeker’s [Stro 2] article.
13#
發(fā)表于 2025-3-23 20:34:58 | 只看該作者
Elliptic curves with good reduction outside a given set of prime ideals,In this chapter we give an explicit parametrization in terms of a certain diophantine equation over K of all elliptic curves over K with good reduction outside a given finite set of prime ideals in ..
14#
發(fā)表于 2025-3-23 23:38:42 | 只看該作者
15#
發(fā)表于 2025-3-24 04:06:12 | 只看該作者
16#
發(fā)表于 2025-3-24 09:37:25 | 只看該作者
Etwas Zahlentheorie und Kryptographiexplicitly been determined for several concrete choices of K and S. In most cases .(S) is obtained by implementing the three steps stated in the introduction. In this chapter we give a review on these and related results.
17#
發(fā)表于 2025-3-24 11:37:54 | 只看該作者
Isogeny Classes,ductor the division into isogeny classes can in many cases explicitly be carried out. This corresponds to step (3) in the introduction. We will also see how to visualize an isogeny class by a certain type of graphs.
18#
發(fā)表于 2025-3-24 16:15:46 | 只看該作者
Review on Explicit Results,xplicitly been determined for several concrete choices of K and S. In most cases .(S) is obtained by implementing the three steps stated in the introduction. In this chapter we give a review on these and related results.
19#
發(fā)表于 2025-3-24 21:02:13 | 只看該作者
20#
發(fā)表于 2025-3-25 02:03:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
榆社县| 金川县| 东明县| 永昌县| 神池县| 修武县| 丰都县| 安龙县| 湘乡市| 获嘉县| 嘉禾县| 伽师县| 钦州市| 青岛市| 兴安县| 开封市| 宜川县| 茶陵县| 侯马市| 乌鲁木齐市| 揭东县| 九江县| 衡阳市| 昌吉市| 仪征市| 西安市| 长海县| 慈利县| 兴义市| 南涧| 徐汇区| 迭部县| 静安区| 贵溪市| 阜阳市| 福清市| 泉州市| 都昌县| 六安市| 西青区| 壶关县|