找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curves over Number Fields with Prescribed Reduction Type; Michael Laska Book 1983 Springer Fachmedien Wiesbaden 1983 Algebra.Endl

[復(fù)制鏈接]
樓主: GUST
11#
發(fā)表于 2025-3-23 09:41:06 | 只看該作者
Skalarprodukt und orthogonale AbbildungenIn this chapter we give an explicit parametrization in terms of a certain diophantine equation over K of all elliptic curves over K with good reduction outside a given finite set of prime ideals in ..
12#
發(fā)表于 2025-3-23 16:48:37 | 只看該作者
Reduction of elliptic curves,In this chapter we state the basic facts about reduction of elliptic curves over K. More detailed informations about elliptic curves may be obtained, for example, from Tate’s [Ta 1] or Stroeker’s [Stro 2] article.
13#
發(fā)表于 2025-3-23 20:34:58 | 只看該作者
Elliptic curves with good reduction outside a given set of prime ideals,In this chapter we give an explicit parametrization in terms of a certain diophantine equation over K of all elliptic curves over K with good reduction outside a given finite set of prime ideals in ..
14#
發(fā)表于 2025-3-23 23:38:42 | 只看該作者
15#
發(fā)表于 2025-3-24 04:06:12 | 只看該作者
16#
發(fā)表于 2025-3-24 09:37:25 | 只看該作者
Etwas Zahlentheorie und Kryptographiexplicitly been determined for several concrete choices of K and S. In most cases .(S) is obtained by implementing the three steps stated in the introduction. In this chapter we give a review on these and related results.
17#
發(fā)表于 2025-3-24 11:37:54 | 只看該作者
Isogeny Classes,ductor the division into isogeny classes can in many cases explicitly be carried out. This corresponds to step (3) in the introduction. We will also see how to visualize an isogeny class by a certain type of graphs.
18#
發(fā)表于 2025-3-24 16:15:46 | 只看該作者
Review on Explicit Results,xplicitly been determined for several concrete choices of K and S. In most cases .(S) is obtained by implementing the three steps stated in the introduction. In this chapter we give a review on these and related results.
19#
發(fā)表于 2025-3-24 21:02:13 | 只看該作者
20#
發(fā)表于 2025-3-25 02:03:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
敖汉旗| 沙洋县| 鱼台县| 五峰| 安平县| 栾川县| 仪征市| 容城县| 万年县| 铁力市| 虎林市| 错那县| 茶陵县| 抚松县| 商城县| 纳雍县| 旌德县| 张家界市| 上杭县| 全南县| 庆城县| 新绛县| 武汉市| 饶河县| 东兰县| 太仆寺旗| 渭南市| 岢岚县| 富宁县| 大余县| 广河县| 凌海市| 辽宁省| 沐川县| 安国市| 彝良县| 正宁县| 赤壁市| 紫金县| 延川县| 阿拉善盟|