找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curves and Arithmetic Invariants; Haruzo Hida Book 2013 Springer Science+Business Media New York 2013 Hecke algebra.Shimura varie

[復(fù)制鏈接]
樓主: fasten
31#
發(fā)表于 2025-3-27 00:21:08 | 只看該作者
32#
發(fā)表于 2025-3-27 03:13:11 | 只看該作者
Nontriviality of Arithmetic Invariants,tions and motives. Number theorists all agree that .-functions and .-values are useful invariants for studying the object with number-theoretic goals in mind. From .-functions, number theorists have created more invariants, for example, .- and .-invariant from .-adic .-functions and the .-invariant from exceptional zeros of .-adic .-functions.
33#
發(fā)表于 2025-3-27 06:46:09 | 只看該作者
34#
發(fā)表于 2025-3-27 09:57:11 | 只看該作者
Review of Scheme Theory, necessary to describe elliptic curves and modular forms. Group schemes are best understood from the functorial viewpoint of scheme theory, regarding a scheme as a functor from the category of algebras to sets taking each algebra . to the set of .-rational points .(.) of the scheme ..
35#
發(fā)表于 2025-3-27 15:12:56 | 只看該作者
36#
發(fā)表于 2025-3-27 21:38:12 | 只看該作者
Book 2013urce for experts in the field, but it is also accessible to advanced graduate students studying number theory.? Key topics include non-triviality of arithmetic invariants and special values of .L.-functions; elliptic curves over complex and .p.-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves.
37#
發(fā)表于 2025-3-28 01:11:40 | 只看該作者
38#
發(fā)表于 2025-3-28 04:04:33 | 只看該作者
Invariants, Shimura Variety, and Hecke Algebra,ptic curves in an elementary manner in Chap.2, at least we could illustrate our main objectives in this book with a rough outline of their proofs. Detailed proofs (for some of them) will be given after we become equipped with a scheme-theoretic description of elliptic curves and their moduli as the
39#
發(fā)表于 2025-3-28 09:23:44 | 只看該作者
40#
發(fā)表于 2025-3-28 14:21:40 | 只看該作者
Geometry of Variety, is to make the book logically complete, and another is to give the foundation of the theory of towers of varieties in the language of proschemes, since the Shimura variety is a tower of varieties fundamental to the number-theoretic study of automorphic forms. If the reader is familiar with the subj
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 02:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
达拉特旗| 安顺市| 玉山县| 鸡西市| 怀宁县| 哈巴河县| 泾源县| 方山县| 梁山县| 大安市| 东乡族自治县| 巴东县| 平利县| 伊吾县| 鄂州市| 南京市| 嘉荫县| 健康| 泸州市| 东平县| 商洛市| 芜湖市| 崇明县| 广宁县| 公主岭市| 土默特右旗| 怀来县| 三河市| 阿克苏市| 潼关县| 乌兰浩特市| 色达县| 海城市| 菏泽市| 淅川县| 凤冈县| 丹凤县| 文水县| 泽库县| 合肥市| 九江市|