找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curves and Arithmetic Invariants; Haruzo Hida Book 2013 Springer Science+Business Media New York 2013 Hecke algebra.Shimura varie

[復(fù)制鏈接]
查看: 19678|回復(fù): 48
樓主
發(fā)表于 2025-3-21 18:38:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Elliptic Curves and Arithmetic Invariants
編輯Haruzo Hida
視頻videohttp://file.papertrans.cn/308/307777/307777.mp4
概述Contains top-notch research that will interest both experts and advanced graduate students.Written by an expert renowned for his discovery that modular forms fall into families, otherwise known as "Hi
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Elliptic Curves and Arithmetic Invariants;  Haruzo Hida Book 2013 Springer Science+Business Media New York 2013 Hecke algebra.Shimura varie
描述This book contains a detailed account of the result of the author‘s recent Annals paper and JAMS paper on arithmetic invariant, including .μ.-invariant, .L.-invariant, and similar topics.?? This book can be regarded as an introductory text to the author‘s previous book .p-Adic Automorphic Forms on Shimura Varieties..? Written as a down-to-earth introduction to Shimura varieties, this text includes many examples and applications of the theory that provide motivation for the reader.? Since it is limited to modular curves and the corresponding Shimura varieties, this book is not only a great resource for experts in the field, but it is also accessible to advanced graduate students studying number theory.? Key topics include non-triviality of arithmetic invariants and special values of .L.-functions; elliptic curves over complex and .p.-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves.
出版日期Book 2013
關(guān)鍵詞Hecke algebra; Shimura variety; arithmetic invariants; elliptic curves; modular forms; scheme theory
版次1
doihttps://doi.org/10.1007/978-1-4614-6657-4
isbn_softcover978-1-4899-9092-1
isbn_ebook978-1-4614-6657-4Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer Science+Business Media New York 2013
The information of publication is updating

書目名稱Elliptic Curves and Arithmetic Invariants影響因子(影響力)




書目名稱Elliptic Curves and Arithmetic Invariants影響因子(影響力)學(xué)科排名




書目名稱Elliptic Curves and Arithmetic Invariants網(wǎng)絡(luò)公開度




書目名稱Elliptic Curves and Arithmetic Invariants網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Elliptic Curves and Arithmetic Invariants被引頻次




書目名稱Elliptic Curves and Arithmetic Invariants被引頻次學(xué)科排名




書目名稱Elliptic Curves and Arithmetic Invariants年度引用




書目名稱Elliptic Curves and Arithmetic Invariants年度引用學(xué)科排名




書目名稱Elliptic Curves and Arithmetic Invariants讀者反饋




書目名稱Elliptic Curves and Arithmetic Invariants讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:41:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:16:09 | 只看該作者
地板
發(fā)表于 2025-3-22 08:15:38 | 只看該作者
5#
發(fā)表于 2025-3-22 11:21:56 | 只看該作者
6#
發(fā)表于 2025-3-22 13:03:57 | 只看該作者
7#
發(fā)表于 2025-3-22 18:47:30 | 只看該作者
8#
發(fā)表于 2025-3-22 23:30:31 | 只看該作者
Elliptic Curves and Modular Forms,We now describe basics of elliptic curves and modular curves in three steps:
9#
發(fā)表于 2025-3-23 04:01:39 | 只看該作者
10#
發(fā)表于 2025-3-23 07:35:58 | 只看該作者
Nonvanishing Modulo , of Hecke ,-Values,We return to the setting of Sect. 6.4; thus, . with discriminant ? . is an imaginary quadratic field in which the fixed prime (.) splits into a product of two primes . with ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
如皋市| 广南县| 乌鲁木齐县| 安平县| 监利县| 天门市| 宝鸡市| 荔浦县| 大理市| 南通市| 东丰县| 新沂市| 徐州市| 台北市| 韩城市| 沁阳市| 刚察县| 潍坊市| 怀柔区| 浙江省| 遂宁市| 溧水县| 开江县| 板桥市| 五莲县| 万山特区| 涞源县| 江口县| 军事| 闽侯县| 南雄市| 龙州县| 临沧市| 龙门县| 攀枝花市| 郓城县| 宁都县| 宜兴市| 且末县| 石屏县| 沭阳县|