找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curves; Diophantine Analysis Serge Lang Book 1978 Springer-Verlag Berlin Heidelberg 1978 Algebra.Arithmetic.Curves.Diophantische A

[復(fù)制鏈接]
查看: 11963|回復(fù): 47
樓主
發(fā)表于 2025-3-21 17:05:32 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Elliptic Curves
副標(biāo)題Diophantine Analysis
編輯Serge Lang
視頻videohttp://file.papertrans.cn/308/307776/307776.mp4
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Elliptic Curves; Diophantine Analysis Serge Lang Book 1978 Springer-Verlag Berlin Heidelberg 1978 Algebra.Arithmetic.Curves.Diophantische A
描述It is possible to write endlessly on elliptic curves. (This is not a threat.) We deal here with diophantine problems, and we lay the foundations, especially for the theory of integral points. We review briefly the analytic theory of the Weierstrass function, and then deal with the arithmetic aspects of the addition formula, over complete fields and over number fields, giving rise to the theory of the height and its quadraticity. We apply this to integral points, covering the inequalities of diophantine approximation both on the multiplicative group and on the elliptic curve directly. Thus the book splits naturally in two parts. The first part deals with the ordinary arithmetic of the elliptic curve: The transcendental parametrization, the p-adic parametrization, points of finite order and the group of rational points, and the reduction of certain diophantine problems by the theory of heights to diophantine inequalities involving logarithms. The second part deals with the proofs of selected inequalities, at least strong enough to obtain the finiteness of integral points.
出版日期Book 1978
關(guān)鍵詞Algebra; Arithmetic; Curves; Diophantische Approximation; Diophantische Ungleichung; Elliptische Kurve; eq
版次1
doihttps://doi.org/10.1007/978-3-662-07010-9
isbn_softcover978-3-642-05717-5
isbn_ebook978-3-662-07010-9Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 1978
The information of publication is updating

書目名稱Elliptic Curves影響因子(影響力)




書目名稱Elliptic Curves影響因子(影響力)學(xué)科排名




書目名稱Elliptic Curves網(wǎng)絡(luò)公開度




書目名稱Elliptic Curves網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Elliptic Curves被引頻次




書目名稱Elliptic Curves被引頻次學(xué)科排名




書目名稱Elliptic Curves年度引用




書目名稱Elliptic Curves年度引用學(xué)科排名




書目名稱Elliptic Curves讀者反饋




書目名稱Elliptic Curves讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:01:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:19:48 | 只看該作者
https://doi.org/10.1007/978-3-322-85917-4eneration of ., see also the account given in Mordell’s book [Mo]. Next we give a second proof depending on more algebraic number theory and reduction mod various primes, but involving no computations and also applicable to abelian varieties.
地板
發(fā)表于 2025-3-22 08:20:41 | 只看該作者
5#
發(fā)表于 2025-3-22 09:12:17 | 只看該作者
Kummer Theoryeneration of ., see also the account given in Mordell’s book [Mo]. Next we give a second proof depending on more algebraic number theory and reduction mod various primes, but involving no computations and also applicable to abelian varieties.
6#
發(fā)表于 2025-3-22 14:26:32 | 只看該作者
7#
發(fā)表于 2025-3-22 17:18:02 | 只看該作者
0072-7830 ions, especially for the theory of integral points. We review briefly the analytic theory of the Weierstrass function, and then deal with the arithmetic aspects of the addition formula, over complete fields and over number fields, giving rise to the theory of the height and its quadraticity. We appl
8#
發(fā)表于 2025-3-22 22:32:34 | 只看該作者
Mathematik. Vorlesungen für Ingenieurschulennd giving one-parameter analytic subgroups. We want to see what happens when the base field is .-adic. As before, we carry out the theory ad hoc in a simple manner, making use of the addition formulas given explicitly on the elliptic curve, without fancy language.
9#
發(fā)表于 2025-3-23 03:16:03 | 只看該作者
10#
發(fā)表于 2025-3-23 07:20:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 12:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康定县| 桃园县| 沁源县| 云安县| 富宁县| 永年县| 托克逊县| 梨树县| 平远县| 正定县| 台山市| 通渭县| 蓝田县| 扎鲁特旗| 江永县| 建水县| 雷山县| 定安县| 阿坝县| 承德县| 富锦市| 略阳县| 张北县| 尼玛县| 玉门市| 泸定县| 安庆市| 营口市| 新疆| 呼和浩特市| 论坛| 峨眉山市| 汝南县| 乌审旗| 开远市| 梨树县| 邓州市| 乌兰浩特市| 花莲县| 蕲春县| 石泉县|