找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curve Public Key Cryptosystems; Alfred Menezes Book 1993 Springer Science+Business Media New York 1993 Potential.algorithms.crypt

[復(fù)制鏈接]
樓主: 烹飪
21#
發(fā)表于 2025-3-25 05:46:03 | 只看該作者
Implementation of elliptic Curve cryptosystems,te fields. For a secure system, it is evident from the results of Chapter 5 that the curve and underlying field should be judiciously chosen. However we should point out that for a given underlying field there are a large number of suitable elliptic curve to choose from. If the logarithm problem in
22#
發(fā)表于 2025-3-25 08:12:22 | 只看該作者
Counting Points on Elliptic Curves Over F2m,field . The algorithm has a running time of 0(log. . bit operations, and is rather cumbersome in practice. Buchmann and Muller [20] combined Schoof’s algorithm with Shanks’ baby-step giant-step algorithm, and were able to compute orders of curves over F., where . is a 27-decimal digit prime. The alg
23#
發(fā)表于 2025-3-25 12:34:18 | 只看該作者
Book 1993hms for factoring integers and primalityproving, and in the construction of public key cryptosystems...Elliptic Curve Public Key Cryptosystems. provides an up-to-dateand self-contained treatment of elliptic curve-based public keycryptology. Elliptic curve cryptosystems potentially provideequivalent
24#
發(fā)表于 2025-3-25 16:57:03 | 只看該作者
0893-3405 nt algorithms for factoring integers and primalityproving, and in the construction of public key cryptosystems...Elliptic Curve Public Key Cryptosystems. provides an up-to-dateand self-contained treatment of elliptic curve-based public keycryptology. Elliptic curve cryptosystems potentially providee
25#
發(fā)表于 2025-3-25 23:59:43 | 只看該作者
Balázs Király,Margit Pap,ákos Pilgermajer [68]. Unless otherwise stated, proofs of these results can be found in the book by J. Silverman [140]. For an elementary introduction to elliptic curves, we recommend the notes by Charlap and Robbins [26], and also to the recent book by Silverman and Tate [141].
26#
發(fā)表于 2025-3-26 01:00:14 | 只看該作者
https://doi.org/10.1007/b137592sed. In Section 4.1 we briefly survey the algorithms known for this problem. In Section 4.2, we demonstrate efficient reductions of the logarithm problems in singular elliptic curves and some other groups to the logarithm problem in a finite field.
27#
發(fā)表于 2025-3-26 06:03:03 | 只看該作者
28#
發(fā)表于 2025-3-26 10:33:01 | 只看該作者
Introduction to Elliptic Curves, [68]. Unless otherwise stated, proofs of these results can be found in the book by J. Silverman [140]. For an elementary introduction to elliptic curves, we recommend the notes by Charlap and Robbins [26], and also to the recent book by Silverman and Tate [141].
29#
發(fā)表于 2025-3-26 16:16:59 | 只看該作者
30#
發(fā)表于 2025-3-26 18:51:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 22:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衡东县| 三原县| 闽清县| 同心县| 夹江县| 金川县| 宜阳县| 泾源县| 田东县| 华宁县| 镇安县| 大埔县| 华容县| 巴南区| 阳谷县| 兴隆县| 灵台县| 嘉兴市| 雅安市| 永吉县| 灵寿县| 新干县| 麻江县| 翁牛特旗| 台东市| 建宁县| 来宾市| 甘谷县| 九台市| 元江| 宁城县| 即墨市| 嘉鱼县| 库车县| 曲沃县| 五大连池市| 岳普湖县| 平阳县| 临泉县| 东莞市| 延安市|