找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Boundary Value Problems in the Spaces of Distributions; Yakov Roitberg Book 1996 Springer Science+Business Media Dordrecht 1996 B

[復(fù)制鏈接]
樓主: otitis-externa
21#
發(fā)表于 2025-3-25 06:16:14 | 只看該作者
978-94-010-6276-3Springer Science+Business Media Dordrecht 1996
22#
發(fā)表于 2025-3-25 10:10:52 | 只看該作者
Overview: 978-94-010-6276-3978-94-011-5410-9
23#
發(fā)表于 2025-3-25 11:46:17 | 只看該作者
24#
發(fā)表于 2025-3-25 18:25:38 | 只看該作者
25#
發(fā)表于 2025-3-25 23:01:03 | 只看該作者
26#
發(fā)表于 2025-3-26 02:05:11 | 只看該作者
Elliptic Problems with Normal Boundary Conditions,ction 1.10). Below, we consider only special local coordinates defined in a sufficiently small neighborhood .(..) of every point .. ∈ ?.. If (.′,…, .′.) is any other system of special coordinates in G ∩ ., then, in . ∩ . ∩) G, we have . and the determinant of the Jacobi matrix det .′/. of this transformation is not equal to zero.
27#
發(fā)表于 2025-3-26 04:50:22 | 只看該作者
Construction of a Regular Heptadecagon,o [Agm], [AgN], and [Som]) as a class of elliptic boundary-value problems with a parameter. In the papers mentioned above, elliptic boundary-value problems with a parameter were studied in classes of sufficiently smooth functions. In [Roi18]-[Roi20], [RoS1], and [RoS2], these problems were investigated in spaces of generalized functions.
28#
發(fā)表于 2025-3-26 12:20:14 | 只看該作者
Estimation in Parametric Models, function in G such that .(.) = 1 for dist (.,?.)≤ε and .(.) = 0 for dist(.,?.)≥ 2ε (ε > 0 is a sufficiently small number), then the rth-order expression . satisfies condition (6.1.4) but is not elliptic at any point of ?..
29#
發(fā)表于 2025-3-26 16:06:42 | 只看該作者
30#
發(fā)表于 2025-3-26 20:27:33 | 只看該作者
https://doi.org/10.1007/978-90-481-3747-3 Thus, even in the case where the defect of problem (7.1.3) is equal to zero ., the problem with power singularities on the right-hand sides admits numerous solutions. To choose a unique solution, it is necessary to impose additional restrictions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 03:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乡宁县| 泰顺县| 武川县| 南丹县| 巴马| 黄石市| 耿马| 九江县| 兰溪市| 郎溪县| 东辽县| 林西县| 雅江县| 桂林市| 海门市| 尼玛县| 涪陵区| 屏南县| 海兴县| 陆丰市| 阿图什市| 金华市| 犍为县| 上犹县| 佛冈县| 墨竹工卡县| 蓬莱市| 宝鸡市| 酉阳| 嘉善县| 桐城市| 惠东县| 华容县| 会泽县| 库伦旗| 涿鹿县| 德化县| 麟游县| 木里| 溧阳市| 司法|